Skip to main content

Supervised Classification

Image Classification in Remote Sensing

Image classification in remote sensing involves categorizing pixels in an image into thematic classes to produce a map. This process is essential for land use and land cover mapping, environmental studies, and resource management. The two primary methods for classification are Supervised and Unsupervised Classification. Here's a breakdown of these methods and the key stages of image classification.


1. Types of Classification

Supervised Classification

In supervised classification, the analyst manually defines classes of interest (known as information classes), such as "water," "urban," or "vegetation," and identifies training areasβ€”sections of the image that are representative of these classes. Using these training areas, the algorithm learns the spectral characteristics of each class and applies them to classify the entire image.

  • When to Use Supervised Classification:   - You have prior knowledge about the classes.   - You can verify the training areas with ground truth data.   - You can identify distinct, homogeneous regions for each class.

Unsupervised Classification

Unsupervised classification, on the other hand, uses the spectral properties of the image data to automatically group pixels with similar spectral characteristics into spectral classes. These classes are later labeled by the analyst based on the spectral patterns and ground-truth information.

  • When to Use Unsupervised Classification:   - You have limited prior knowledge about the image's content.   - You need a large number of classes or wish to explore the data's spectral characteristics.   - It's beneficial for quickly exploring unknown regions.

2. Key Stages of Image Classification

Image classification follows a systematic series of stages to produce accurate thematic maps.

  1. Raw Data Collection: Initial, unprocessed image data is collected.
  2. Preprocessing: Prepares the data for analysis by correcting atmospheric effects, removing noise, and aligning geometry. This stage is essential to ensure data accuracy.
  3. Signature Collection: In supervised classification, the analyst collects samples, called signatures, representing each class. These signatures capture the typical spectral characteristics for each category.
  4. Signature Evaluation: The quality and distinctiveness of signatures are evaluated to ensure that they are statistically separate and represent the classes accurately.
  5. Classification: Using the collected signatures, the classification algorithm assigns each pixel to a specific class, producing the classified map.

3. Information Class vs. Spectral Class

  • Information Class: An information class represents real-world categories, such as water bodies, urban areas, or vegetation, specified by the analyst for extraction from the image.
  • Spectral Class: A spectral class is determined by the clustering of pixels with similar spectral (color or brightness) values. These classes are automatically identified based on statistical similarities in pixel values across multiple spectral bands.

4. Supervised vs. Unsupervised Training

To classify an image, a system needs to be trained to recognize patterns.

  • Supervised Training:   - Controlled by the analyst, who selects representative pixels and instructs the system on what each class should look like.   - Often more accurate but requires skill and understanding of the region.
  • Unsupervised Training:   - The computer automatically groups pixels based on spectral properties, with the analyst specifying the desired number of classes.   - This approach requires less skill but may be less accurate.

5. Classification Decision Rules in Supervised Classification

In supervised classification, different decision rules guide the process of assigning pixels to classes. Here are some common ones:

Parametric Decision Rules

These rules assume that pixel values follow a normal distribution, which allows the system to use statistical measures for classification.

  • Minimum Distance Classifier:   - Calculates the distance between a candidate pixel and the mean of each class signature.   - Assigns the pixel to the class with the shortest distance (e.g., Euclidean or Mahalanobis distance).
  • Maximum Likelihood Classifier:   - Considers both variance and covariance within class signatures.   - Assumes a normal distribution and assigns pixels to the class with the highest probability of belonging.

Nonparametric Decision Rules

These rules do not assume a specific distribution.

  • Parallelepiped Classifier:   - Uses minimum and maximum values for each class and assigns pixels within these limits to the corresponding class.

  • Feature Space Classifier:   - Analyzes classes based on polygons within a feature space, which is often more accurate than the parallelepiped method.


Summary Table

AspectSupervised ClassificationUnsupervised Classification
DefinitionUses predefined classes and training areas.Uses statistical groupings based on spectral properties.
ClassesInformation Classes: Known classes defined by the analyst.Spectral Classes: Classes identified by the system.
Training ProcessAnalyst selects and verifies classes.System automatically groups pixels; analyst labels classes.
Best Use CaseWhen classes are known, distinct, and verifiable with ground truth.When classes are unknown or when exploratory analysis is needed.
Accuracy and Skill RequirementHigh accuracy; requires skill and knowledge.Generally lower accuracy; requires less skill.
Decision RulesMinimum Distance, Maximum Likelihood, Parallelepiped, Feature Space.Classes grouped by spectral similarity.

https://geogisgeo.blogspot.com/2023/01/minimum-distance-gaussian-maximum.html



PG and Research Department of Geography,
Government College Chittur, Palakkad
https://g.page/vineeshvc

Comments

Popular posts from this blog

KSHEC Scholarship 2024-25

KSHEC Scholarship 2024-25 Alert! First-Year UG Students Only, Don't Miss This Golden Opportunity! πŸ’‘βœ¨ Are you a first-year undergraduate student studying in a Government or Aided College in Kerala? Do you need financial assistance to continue your education without stress? The Kerala State Higher Education Council (KSHEC) Scholarship is here to support YOU!  This scholarship is a lifeline for deserving students, helping them focus on their studies without worrying about financial burdens. If you meet the criteria, APPLY NOW and take a step towards a brighter future! 🌟 βœ… Simple Online Application – Quick & easy process!  πŸ“Œ Who Can Apply? βœ”οΈ First-year UG students ONLY βœ”οΈ Must be studying in an Arts & Science Government or Aided college in Kerala βœ”οΈ Professional Course students are not eligible  πŸ”Ή Scholarship Amounts Per Year: πŸ“Œ 1st Year FYUGP – β‚Ή12,000 πŸ“Œ 2nd Year FYUGP – β‚Ή18,000 πŸ“Œ 3rd Year FYUGP – β‚Ή24,000 πŸ“Œ 4th Year FYUGP – β‚Ή40,000 πŸ“Œ 5th Year PG – β‚Ή60,000  Great News...

Disaster Management

1. Disaster Risk Analysis β†’ Disaster Risk Reduction β†’ Disaster Management Cycle Disaster Risk Analysis is the first step in managing disasters. It involves assessing potential hazards, identifying vulnerable populations, and estimating possible impacts. Once risks are identified, Disaster Risk Reduction (DRR) strategies come into play. DRR aims to reduce risk and enhance resilience through planning, infrastructure development, and policy enforcement. The Disaster Management Cycle then ensures a structured approach by dividing actions into pre-disaster, during-disaster, and post-disaster phases . Example Connection: Imagine a coastal city prone to cyclones: Risk Analysis identifies low-lying areas and weak infrastructure. Risk Reduction includes building seawalls, enforcing strict building codes, and training residents for emergency situations. The Disaster Management Cycle ensures ongoing preparedness, immediate response during a cyclone, and long-term recovery afterw...

Pre During and Post Disaster

Disaster management is a structured approach aimed at reducing risks, responding effectively, and ensuring a swift recovery from disasters. It consists of three main phases: Pre-Disaster (Mitigation & Preparedness), During Disaster (Response), and Post-Disaster (Recovery). These phases involve various strategies, policies, and actions to protect lives, property, and the environment. Below is a breakdown of each phase with key concepts, terminologies, and examples. 1. Pre-Disaster Phase (Mitigation and Preparedness) Mitigation: This phase focuses on reducing the severity of a disaster by minimizing risks and vulnerabilities. It involves structural and non-structural measures. Hazard Identification: Recognizing potential natural and human-made hazards (e.g., earthquakes, floods, industrial accidents). Risk Assessment: Evaluating the probability and consequences of disasters using GIS, remote sensing, and historical data. Vulnerability Analysis: Identifying areas and p...

Recovery and Rehabilitation

Disaster management involves several phases, including mitigation, preparedness, response, recovery, and rehabilitation . Recovery and rehabilitation are post-disaster activities that aim to restore normalcy and improve resilience in affected areas. 1. Recovery Recovery is the long-term process of rebuilding communities, infrastructure, economy, and social systems after a disaster. It focuses on restoring normalcy while incorporating resilience measures to withstand future disasters. Short-term Recovery – Immediate efforts within weeks or months to restore essential services (e.g., water, electricity, healthcare, shelter). Long-term Recovery – Efforts that take months to years, including rebuilding infrastructure, economic revitalization, and mental health support. Resilience – The ability of a community to recover quickly and adapt to future disasters. Livelihood Restoration – Providing economic support to affected populations through job creation, skill training, a...

Mapping Process

The mapping process involves several systematic steps to transform real-world spatial information into a readable, accurate, and useful representation. Below is a structured explanation of each step in the mapping process, with key concepts, terminologies, and examples. 1. Defining the Purpose of the Map Before creating a map, it is essential to determine its purpose and audience . Different maps serve different objectives, such as navigation, analysis, or communication. Types of Maps Based on Purpose: Thematic Maps: Focus on specific subjects (e.g., climate maps, population density maps). Topographic Maps: Show natural and human-made features (e.g., contour maps, landform maps). Tourist Maps: Highlight attractions, roads, and landmarks for travelers. Cadastral Maps: Used in land ownership and property boundaries. Navigational Maps: Used in GPS systems for wayfinding. Example: A disaster risk map for floods will highlight flood-prone areas, emergency shelters, and ...