Skip to main content

Supervised Classification

Image Classification in Remote Sensing

Image classification in remote sensing involves categorizing pixels in an image into thematic classes to produce a map. This process is essential for land use and land cover mapping, environmental studies, and resource management. The two primary methods for classification are Supervised and Unsupervised Classification. Here's a breakdown of these methods and the key stages of image classification.


1. Types of Classification

Supervised Classification

In supervised classification, the analyst manually defines classes of interest (known as information classes), such as "water," "urban," or "vegetation," and identifies training areas—sections of the image that are representative of these classes. Using these training areas, the algorithm learns the spectral characteristics of each class and applies them to classify the entire image.

  • When to Use Supervised Classification:   - You have prior knowledge about the classes.   - You can verify the training areas with ground truth data.   - You can identify distinct, homogeneous regions for each class.

Unsupervised Classification

Unsupervised classification, on the other hand, uses the spectral properties of the image data to automatically group pixels with similar spectral characteristics into spectral classes. These classes are later labeled by the analyst based on the spectral patterns and ground-truth information.

  • When to Use Unsupervised Classification:   - You have limited prior knowledge about the image's content.   - You need a large number of classes or wish to explore the data's spectral characteristics.   - It's beneficial for quickly exploring unknown regions.

2. Key Stages of Image Classification

Image classification follows a systematic series of stages to produce accurate thematic maps.

  1. Raw Data Collection: Initial, unprocessed image data is collected.
  2. Preprocessing: Prepares the data for analysis by correcting atmospheric effects, removing noise, and aligning geometry. This stage is essential to ensure data accuracy.
  3. Signature Collection: In supervised classification, the analyst collects samples, called signatures, representing each class. These signatures capture the typical spectral characteristics for each category.
  4. Signature Evaluation: The quality and distinctiveness of signatures are evaluated to ensure that they are statistically separate and represent the classes accurately.
  5. Classification: Using the collected signatures, the classification algorithm assigns each pixel to a specific class, producing the classified map.

3. Information Class vs. Spectral Class

  • Information Class: An information class represents real-world categories, such as water bodies, urban areas, or vegetation, specified by the analyst for extraction from the image.
  • Spectral Class: A spectral class is determined by the clustering of pixels with similar spectral (color or brightness) values. These classes are automatically identified based on statistical similarities in pixel values across multiple spectral bands.

4. Supervised vs. Unsupervised Training

To classify an image, a system needs to be trained to recognize patterns.

  • Supervised Training:   - Controlled by the analyst, who selects representative pixels and instructs the system on what each class should look like.   - Often more accurate but requires skill and understanding of the region.
  • Unsupervised Training:   - The computer automatically groups pixels based on spectral properties, with the analyst specifying the desired number of classes.   - This approach requires less skill but may be less accurate.

5. Classification Decision Rules in Supervised Classification

In supervised classification, different decision rules guide the process of assigning pixels to classes. Here are some common ones:

Parametric Decision Rules

These rules assume that pixel values follow a normal distribution, which allows the system to use statistical measures for classification.

  • Minimum Distance Classifier:   - Calculates the distance between a candidate pixel and the mean of each class signature.   - Assigns the pixel to the class with the shortest distance (e.g., Euclidean or Mahalanobis distance).
  • Maximum Likelihood Classifier:   - Considers both variance and covariance within class signatures.   - Assumes a normal distribution and assigns pixels to the class with the highest probability of belonging.

Nonparametric Decision Rules

These rules do not assume a specific distribution.

  • Parallelepiped Classifier:   - Uses minimum and maximum values for each class and assigns pixels within these limits to the corresponding class.

  • Feature Space Classifier:   - Analyzes classes based on polygons within a feature space, which is often more accurate than the parallelepiped method.


Summary Table

AspectSupervised ClassificationUnsupervised Classification
DefinitionUses predefined classes and training areas.Uses statistical groupings based on spectral properties.
ClassesInformation Classes: Known classes defined by the analyst.Spectral Classes: Classes identified by the system.
Training ProcessAnalyst selects and verifies classes.System automatically groups pixels; analyst labels classes.
Best Use CaseWhen classes are known, distinct, and verifiable with ground truth.When classes are unknown or when exploratory analysis is needed.
Accuracy and Skill RequirementHigh accuracy; requires skill and knowledge.Generally lower accuracy; requires less skill.
Decision RulesMinimum Distance, Maximum Likelihood, Parallelepiped, Feature Space.Classes grouped by spectral similarity.

https://geogisgeo.blogspot.com/2023/01/minimum-distance-gaussian-maximum.html



PG and Research Department of Geography,
Government College Chittur, Palakkad
https://g.page/vineeshvc

Comments

Popular posts from this blog

geostationary and sun-synchronous

Orbital characteristics of Remote sensing satellite geostationary and sun-synchronous  Orbits in Remote Sensing Orbit = the path a satellite follows around the Earth. The orbit determines what part of Earth the satellite can see , how often it revisits , and what applications it is good for . Remote sensing satellites mainly use two standard orbits : Geostationary Orbit (GEO) Sun-Synchronous Orbit (SSO)  Geostationary Satellites (GEO) Characteristics Altitude : ~35,786 km above the equator. Period : 24 hours → same as Earth's rotation. Orbit type : Circular, directly above the equator . Appears "stationary" over one fixed point on Earth. Concepts & Terminologies Geosynchronous = orbit period matches Earth's rotation (24h). Geostationary = special type of geosynchronous orbit directly above equator → looks fixed. Continuous coverage : Can monitor the same area all the time. Applications Weather...

Types of Remote Sensing

Remote Sensing means collecting information about the Earth's surface without touching it , usually using satellites, aircraft, or drones . There are different types of remote sensing based on the energy source and the wavelength region used. 🛰️ 1. Active Remote Sensing 📘 Concept: In active remote sensing , the sensor sends out its own energy (like a signal or pulse) to the Earth's surface. The sensor then records the reflected or backscattered energy that comes back from the surface. ⚙️ Key Terminology: Transmitter: sends energy (like a radar pulse or laser beam). Receiver: detects the energy that bounces back. Backscatter: energy that is reflected back to the sensor. 📊 Examples of Active Sensors: RADAR (Radio Detection and Ranging): Uses microwave signals to detect surface roughness, soil moisture, or ocean waves. LiDAR (Light Detection and Ranging): Uses laser light (near-infrared) to measure elevation, vegetation...

India remote sensing

1. Foundational Phase (Early 1970s – Early 1980s) Objective: To explore the potential of space-based observation for national development. 1972: The Space Applications Programme (SAP) was initiated by the Indian Space Research Organisation (ISRO), focusing on applying space technology for societal benefits. 1975: The Department of Space (DoS) was established, providing an institutional base for space applications, including remote sensing. 1977: India began aerial and balloon-borne experiments to study Earth resources and assess how remote sensing data could aid in agriculture, forestry, and hydrology. 1978 (June 7): Bhaskara-I launched by the Soviet Union — India's first experimental Earth Observation satellite . Payloads: TV cameras (for land and ocean surface observation) and a Microwave Radiometer. Significance: Proved that satellite-based Earth observation was feasible for India's needs. 1981 (November 20): Bhaskara-II launche...

Natural Disasters

A natural disaster is a catastrophic event caused by natural processes of the Earth that results in significant loss of life, property, and environmental resources. It occurs when a hazard (potentially damaging physical event) interacts with a vulnerable population and leads to disruption of normal life . Key terms: Hazard → A potential natural event (e.g., cyclone, earthquake). Disaster → When the hazard causes widespread damage due to vulnerability. Risk → Probability of harmful consequences from interaction of hazard and vulnerability. Vulnerability → Degree to which a community or system is exposed and unable to cope with the hazard. Resilience → Ability of a system or society to recover from the disaster impact. 👉 Example: An earthquake in an uninhabited desert is a hazard , but not a disaster unless people or infrastructure are affected. Types Natural disasters can be classified into geophysical, hydrological, meteorological, clim...

Man-Made Disasters

  A man-made disaster (also called a technological disaster or anthropogenic disaster ) is a catastrophic event caused directly or indirectly by human actions , rather than natural processes. These disasters arise due to negligence, error, industrial activity, conflict, or misuse of technology , and often result in loss of life, property damage, and environmental degradation . Terminology: Anthropogenic = originating from human activity. Technological hazard = hazard caused by failure or misuse of technology or industry. 🔹 Conceptual Understanding Man-made disasters are part of the Disaster Management Cycle , which includes: Prevention – avoiding unsafe practices. Mitigation – reducing disaster impact (e.g., safety regulations). Preparedness – training and planning. Response – emergency actions after the disaster. Recovery – long-term rebuilding and policy correction. These disasters are predictable and preventable through strong...