Skip to main content

Supervised Classification

Image Classification in Remote Sensing

Image classification in remote sensing involves categorizing pixels in an image into thematic classes to produce a map. This process is essential for land use and land cover mapping, environmental studies, and resource management. The two primary methods for classification are Supervised and Unsupervised Classification. Here's a breakdown of these methods and the key stages of image classification.


1. Types of Classification

Supervised Classification

In supervised classification, the analyst manually defines classes of interest (known as information classes), such as "water," "urban," or "vegetation," and identifies training areas—sections of the image that are representative of these classes. Using these training areas, the algorithm learns the spectral characteristics of each class and applies them to classify the entire image.

  • When to Use Supervised Classification:   - You have prior knowledge about the classes.   - You can verify the training areas with ground truth data.   - You can identify distinct, homogeneous regions for each class.

Unsupervised Classification

Unsupervised classification, on the other hand, uses the spectral properties of the image data to automatically group pixels with similar spectral characteristics into spectral classes. These classes are later labeled by the analyst based on the spectral patterns and ground-truth information.

  • When to Use Unsupervised Classification:   - You have limited prior knowledge about the image's content.   - You need a large number of classes or wish to explore the data's spectral characteristics.   - It's beneficial for quickly exploring unknown regions.

2. Key Stages of Image Classification

Image classification follows a systematic series of stages to produce accurate thematic maps.

  1. Raw Data Collection: Initial, unprocessed image data is collected.
  2. Preprocessing: Prepares the data for analysis by correcting atmospheric effects, removing noise, and aligning geometry. This stage is essential to ensure data accuracy.
  3. Signature Collection: In supervised classification, the analyst collects samples, called signatures, representing each class. These signatures capture the typical spectral characteristics for each category.
  4. Signature Evaluation: The quality and distinctiveness of signatures are evaluated to ensure that they are statistically separate and represent the classes accurately.
  5. Classification: Using the collected signatures, the classification algorithm assigns each pixel to a specific class, producing the classified map.

3. Information Class vs. Spectral Class

  • Information Class: An information class represents real-world categories, such as water bodies, urban areas, or vegetation, specified by the analyst for extraction from the image.
  • Spectral Class: A spectral class is determined by the clustering of pixels with similar spectral (color or brightness) values. These classes are automatically identified based on statistical similarities in pixel values across multiple spectral bands.

4. Supervised vs. Unsupervised Training

To classify an image, a system needs to be trained to recognize patterns.

  • Supervised Training:   - Controlled by the analyst, who selects representative pixels and instructs the system on what each class should look like.   - Often more accurate but requires skill and understanding of the region.
  • Unsupervised Training:   - The computer automatically groups pixels based on spectral properties, with the analyst specifying the desired number of classes.   - This approach requires less skill but may be less accurate.

5. Classification Decision Rules in Supervised Classification

In supervised classification, different decision rules guide the process of assigning pixels to classes. Here are some common ones:

Parametric Decision Rules

These rules assume that pixel values follow a normal distribution, which allows the system to use statistical measures for classification.

  • Minimum Distance Classifier:   - Calculates the distance between a candidate pixel and the mean of each class signature.   - Assigns the pixel to the class with the shortest distance (e.g., Euclidean or Mahalanobis distance).
  • Maximum Likelihood Classifier:   - Considers both variance and covariance within class signatures.   - Assumes a normal distribution and assigns pixels to the class with the highest probability of belonging.

Nonparametric Decision Rules

These rules do not assume a specific distribution.

  • Parallelepiped Classifier:   - Uses minimum and maximum values for each class and assigns pixels within these limits to the corresponding class.

  • Feature Space Classifier:   - Analyzes classes based on polygons within a feature space, which is often more accurate than the parallelepiped method.


Summary Table

AspectSupervised ClassificationUnsupervised Classification
DefinitionUses predefined classes and training areas.Uses statistical groupings based on spectral properties.
ClassesInformation Classes: Known classes defined by the analyst.Spectral Classes: Classes identified by the system.
Training ProcessAnalyst selects and verifies classes.System automatically groups pixels; analyst labels classes.
Best Use CaseWhen classes are known, distinct, and verifiable with ground truth.When classes are unknown or when exploratory analysis is needed.
Accuracy and Skill RequirementHigh accuracy; requires skill and knowledge.Generally lower accuracy; requires less skill.
Decision RulesMinimum Distance, Maximum Likelihood, Parallelepiped, Feature Space.Classes grouped by spectral similarity.

https://geogisgeo.blogspot.com/2023/01/minimum-distance-gaussian-maximum.html



PG and Research Department of Geography,
Government College Chittur, Palakkad
https://g.page/vineeshvc

Comments

Popular posts from this blog

The global dimensions of disaster

Disasters are not merely natural occurrences but complex interactions between natural hazards and human vulnerabilities. To effectively address disaster risk, we must consider several interconnected dimensions: 1. Vulnerability: Definition: The susceptibility of individuals, communities, or assets to harm from a disaster. Factors: Socioeconomic conditions, geographic location, and environmental factors influence vulnerability. Example: Communities with high poverty rates and limited access to resources are more vulnerable to disaster impacts. 2. Exposure: Definition: The degree to which people, property, and infrastructure are located in hazard-prone areas. Factors: Population density, land use patterns, and infrastructure development influence exposure. Example: Coastal cities with high population density are highly exposed to hurricane and tsunami risks. 3. Capacity: Definition: A community's ability to prepare for, respond to, and recover from disasters. Factors: Strong ...

Overview of Disasters in India

India's Vulnerability to Natural Disasters India's diverse geography and climate make it highly susceptible to a range of natural disasters. These events, including earthquakes, tsunamis, floods, droughts, cyclones, and landslides, can have devastating consequences for millions of people and the economy. Major Natural Disasters Affecting India: Earthquakes: Tectonic Setting: India's position on the Indian Plate, which is colliding with the Eurasian Plate, makes it prone to seismic activity. Impact: Earthquakes can cause widespread destruction, including building collapses, landslides, and tsunamis. The 2001 Gujarat earthquake is a prime example of such devastation. Tsunamis: Oceanic Triggers: Underwater earthquakes and volcanic eruptions can generate tsunamis, as seen in the 2004 Indian Ocean Tsunami. Impact: Coastal areas are particularly vulnerable to tsunamis, which can lead to massive loss of life and property. Floods: Monsoon Influence: India's...

Water Act 1974

The Water (Prevention and Control of Pollution) Act of 1974 is a significant piece of legislation in India aimed at preventing and controlling water pollution. Here are some key facts about the Act: 1. Objective: The primary objective is to prevent and control water pollution and maintain or restore the wholesomeness of water in the country. 2. Establishment of Boards:    - Central Pollution Control Board (CPCB): The Act mandates the establishment of the CPCB to oversee and coordinate activities across the nation and advise the Central Government.    - State Pollution Control Boards (SPCBs): Each state is required to establish its own SPCB to plan comprehensive programs for the prevention and control of pollution. 3. Powers and Functions:    - The Boards have the authority to inspect any sewage or trade effluents, works, and plants for the treatment of sewage and trade effluents.    - They can establish standards for the discharge of pollutants into water bodies and ensure adherence to...

Environment Management DRR

Environmental management plays a crucial role in disaster risk reduction (DRR) by harnessing the power of natural ecosystems to prevent and mitigate the impacts of disasters. By protecting and restoring these ecosystems, we can strengthen community resilience and promote sustainable development. Interconnections Between Environmental Management and DRR: Ecosystem-Based Disaster Risk Reduction (Eco-DRR): Natural Barriers: Ecosystems like forests, wetlands, and coral reefs act as natural barriers, reducing the impact of hazards like floods, landslides, and storm surges. Resilience Building: Healthy ecosystems enhance community resilience by absorbing excess rainfall, preventing erosion, and mitigating the effects of climate change. Environmental Considerations in Disaster Planning: Sustainable Practices: Incorporating environmental considerations into disaster planning helps prevent further environmental degradation, which can exacerbate disaster impacts. Resource Conservati...

Forset management and water conservation

Forest management and water conservation are closely intertwined concepts, as forests play a crucial role in maintaining water resources. Here's an explanation of their connection: 1. Water Regulation: Forests act as natural sponges, absorbing rainwater and releasing it gradually. Trees help regulate water flow, preventing rapid runoff and reducing the risk of floods. 2. Groundwater Recharge: Trees contribute to groundwater recharge by allowing rainwater to percolate into the soil. This replenishes underground aquifers, which are important sources of freshwater. 3. Erosion Control: Forests provide vegetation cover that protects soil from erosion caused by rainfall. This, in turn, helps maintain the quality of water bodies by preventing sedimentation. 4. Streamflow Maintenance: Healthy forests ensure consistent streamflow. Trees release water through transpiration, influencing local and regional precipitation patterns and sustaining rivers and streams. 5. Biodiversity and Water Qual...