Skip to main content

Supervised Classification

Image Classification in Remote Sensing

Image classification in remote sensing involves categorizing pixels in an image into thematic classes to produce a map. This process is essential for land use and land cover mapping, environmental studies, and resource management. The two primary methods for classification are Supervised and Unsupervised Classification. Here's a breakdown of these methods and the key stages of image classification.


1. Types of Classification

Supervised Classification

In supervised classification, the analyst manually defines classes of interest (known as information classes), such as "water," "urban," or "vegetation," and identifies training areas—sections of the image that are representative of these classes. Using these training areas, the algorithm learns the spectral characteristics of each class and applies them to classify the entire image.

  • When to Use Supervised Classification:   - You have prior knowledge about the classes.   - You can verify the training areas with ground truth data.   - You can identify distinct, homogeneous regions for each class.

Unsupervised Classification

Unsupervised classification, on the other hand, uses the spectral properties of the image data to automatically group pixels with similar spectral characteristics into spectral classes. These classes are later labeled by the analyst based on the spectral patterns and ground-truth information.

  • When to Use Unsupervised Classification:   - You have limited prior knowledge about the image's content.   - You need a large number of classes or wish to explore the data's spectral characteristics.   - It's beneficial for quickly exploring unknown regions.

2. Key Stages of Image Classification

Image classification follows a systematic series of stages to produce accurate thematic maps.

  1. Raw Data Collection: Initial, unprocessed image data is collected.
  2. Preprocessing: Prepares the data for analysis by correcting atmospheric effects, removing noise, and aligning geometry. This stage is essential to ensure data accuracy.
  3. Signature Collection: In supervised classification, the analyst collects samples, called signatures, representing each class. These signatures capture the typical spectral characteristics for each category.
  4. Signature Evaluation: The quality and distinctiveness of signatures are evaluated to ensure that they are statistically separate and represent the classes accurately.
  5. Classification: Using the collected signatures, the classification algorithm assigns each pixel to a specific class, producing the classified map.

3. Information Class vs. Spectral Class

  • Information Class: An information class represents real-world categories, such as water bodies, urban areas, or vegetation, specified by the analyst for extraction from the image.
  • Spectral Class: A spectral class is determined by the clustering of pixels with similar spectral (color or brightness) values. These classes are automatically identified based on statistical similarities in pixel values across multiple spectral bands.

4. Supervised vs. Unsupervised Training

To classify an image, a system needs to be trained to recognize patterns.

  • Supervised Training:   - Controlled by the analyst, who selects representative pixels and instructs the system on what each class should look like.   - Often more accurate but requires skill and understanding of the region.
  • Unsupervised Training:   - The computer automatically groups pixels based on spectral properties, with the analyst specifying the desired number of classes.   - This approach requires less skill but may be less accurate.

5. Classification Decision Rules in Supervised Classification

In supervised classification, different decision rules guide the process of assigning pixels to classes. Here are some common ones:

Parametric Decision Rules

These rules assume that pixel values follow a normal distribution, which allows the system to use statistical measures for classification.

  • Minimum Distance Classifier:   - Calculates the distance between a candidate pixel and the mean of each class signature.   - Assigns the pixel to the class with the shortest distance (e.g., Euclidean or Mahalanobis distance).
  • Maximum Likelihood Classifier:   - Considers both variance and covariance within class signatures.   - Assumes a normal distribution and assigns pixels to the class with the highest probability of belonging.

Nonparametric Decision Rules

These rules do not assume a specific distribution.

  • Parallelepiped Classifier:   - Uses minimum and maximum values for each class and assigns pixels within these limits to the corresponding class.

  • Feature Space Classifier:   - Analyzes classes based on polygons within a feature space, which is often more accurate than the parallelepiped method.


Summary Table

AspectSupervised ClassificationUnsupervised Classification
DefinitionUses predefined classes and training areas.Uses statistical groupings based on spectral properties.
ClassesInformation Classes: Known classes defined by the analyst.Spectral Classes: Classes identified by the system.
Training ProcessAnalyst selects and verifies classes.System automatically groups pixels; analyst labels classes.
Best Use CaseWhen classes are known, distinct, and verifiable with ground truth.When classes are unknown or when exploratory analysis is needed.
Accuracy and Skill RequirementHigh accuracy; requires skill and knowledge.Generally lower accuracy; requires less skill.
Decision RulesMinimum Distance, Maximum Likelihood, Parallelepiped, Feature Space.Classes grouped by spectral similarity.

https://geogisgeo.blogspot.com/2023/01/minimum-distance-gaussian-maximum.html



PG and Research Department of Geography,
Government College Chittur, Palakkad
https://g.page/vineeshvc

Comments

Popular posts from this blog

Geology and Tectonic. Indian Shield

1. Ch (Chattisgarh Basin): Chattisgarh Basin is a geological region in central India known for its sedimentary rock formations. It's important for its mineral resources, including coal and iron ore. 2. CIS (Central Indian Shear Zone): CIS is a tectonic boundary in central India where the Indian Plate interacts with the Eurasian Plate. It's characterized by significant faulting and seismic activity. 3. GR (Godavari Rift): The Godavari Rift is a geological feature associated with the rifting and splitting of the Indian Plate. It's located in the Godavari River basin in southeastern India. 4. M (Madras Block): The Madras Block is a stable continental block in southern India. It's part of the Indian Plate and is not associated with active tectonic processes. 5. Mk (Malanjkhand): Malanjkhand is known for its copper deposits and is one of the largest copper mines in India. 6. MR (Mahanadi Rift): The Mahanadi Rift is a geological feature related to the rifting of the Indian Pl...

Solar Radiation and Remote Sensing

Satellite Remote Sensing Satellite remote sensing is the science of acquiring information about Earth's surface and atmosphere without physical contact , using sensors mounted on satellites. These sensors detect and record electromagnetic radiation (EMR) that is either emitted or reflected from the Earth's surface. Solar Radiation & Earth's Energy Balance Solar Radiation is the primary source of energy for Earth's climate system. It originates from the Sun and travels through space as electromagnetic waves . Incoming Shortwave Solar Radiation (insolation) consists mostly of ultraviolet, visible, and near-infrared wavelengths . When it reaches Earth, it can be: Absorbed by the atmosphere, clouds, or surface Reflected back to space Scattered by atmospheric particles Outgoing Longwave Radiation is the infrared energy emitted by Earth back into space after absorbing solar energy. This process helps maintain Earth's thermal bala...

Morpho-Tectonic Framework of India

The MorphoTectonic Framework of India refers to the combined study of the country's landforms (morphology) and its geological tectonic features. This framework provides insights into how geological forces have shaped India's topography over millions of years. Here's a breakdown of this concept: 1. Morphology: This aspect focuses on the physical features and landforms of India. It includes the study of mountains, plateaus, plains, valleys, rivers, and other surface features. For example, the Himalayas, Western Ghats, IndoGangetic Plains, and Deccan Plateau are prominent morphological features of India. 2. Tectonics: Tectonics deals with the movement and deformation of the Earth's lithosphere (the outermost rigid layer of the Earth). In the case of India, it primarily involves the interactions of the Indian Plate with neighboring tectonic plates. India is situated at the convergence of several major tectonic boundaries:     Collision with the Eurasian Plate: The most sign...

Neighbourhood Operations

 Neighbourhood Operations in GIS? In GIS and raster data , neighbourhood operations look at a group of nearby pixels (not just one) to understand or change a pixel's value. Think of it like checking what's around a house before deciding what color to paint it! Why "Neighbourhood"? Each pixel has " neighbours " (just like how your house has nearby houses). Neighbourhood operations check these nearby pixels and do some calculation to get a new value. 1. Aggregations (Summarizing Nearby Values) Aggregation means combining values of several pixels into one. We do this to: Find the average of surrounding pixels Find the minimum or maximum value Smooth the map (make it less rough) 🧒🏻 Example: Imagine checking the test scores of 9 students sitting around you and finding the average score . That's aggregation!  2. Filtering Techniques Filtering is used to improve or highlight features in a raster image, just like f...

India – Geographic Location – Spatial Significance

India's geographic location holds immense spatial significance due to its position on the world map. Here's an explanation of India's geographic location and its spatial significance: Geographic Location: India is a vast South Asian country located on the Indian subcontinent. Its geographic coordinates are approximately between 8°4'N and 37°6'N latitude and 68°7'E and 97°25'E longitude. It is surrounded by several important bodies of water: - To the west, it has a coastline along the Arabian Sea. - To the east, it is bordered by the Bay of Bengal. - To the south, it faces the Indian Ocean. - To the north, India shares its land borders with Pakistan, China, Nepal, Bhutan, Bangladesh, and Myanmar. Spatial Significance: 1. Strategic Location: India's location places it at the crossroads of South Asia and the Indian Ocean region. This strategic position has made it historically important for trade, diplomacy, and geopolitics. 2. Trade and Commerce: India...