Skip to main content

Geology and Tectonic. Indian Shield


1. Ch (Chattisgarh Basin): Chattisgarh Basin is a geological region in central India known for its sedimentary rock formations. It's important for its mineral resources, including coal and iron ore.

2. CIS (Central Indian Shear Zone): CIS is a tectonic boundary in central India where the Indian Plate interacts with the Eurasian Plate. It's characterized by significant faulting and seismic activity.

3. GR (Godavari Rift): The Godavari Rift is a geological feature associated with the rifting and splitting of the Indian Plate. It's located in the Godavari River basin in southeastern India.

4. M (Madras Block): The Madras Block is a stable continental block in southern India. It's part of the Indian Plate and is not associated with active tectonic processes.

5. Mk (Malanjkhand): Malanjkhand is known for its copper deposits and is one of the largest copper mines in India.

6. MR (Mahanadi Rift): The Mahanadi Rift is a geological feature related to the rifting of the Indian Plate. It's associated with the formation of the Mahanadi River basin in eastern India.

7. N (Nilgiri Block): The Nilgiri Block is a geological region in southern India, known for its ancient rocks and distinct geological history.

8. NS (Narmada-Son Fault Zone): This fault zone extends across central India and marks a significant tectonic boundary where the Indian Plate meets the Eurasian Plate.

9. PC (Palghat-Cauvery Shear Zone): The Palghat-Cauvery Shear Zone is a major geological fault system in southern India, where the Indian Plate interacts with the Eurasian Plate.

10. R (Rengali Province and Kerajang Shear Zone): These are geological regions in eastern India, possibly associated with shear zones and tectonic activity.

11. S (Singhbhum Shear Zone): The Singhbhum Shear Zone is a tectonic feature in eastern India that has played a significant role in the geological history of the region.

12. V (Vindhyan Basin): The Vindhyan Basin is a sedimentary basin in central India known for its extensive rock formations, which hold clues to the Earth's geological past.



1. Shear Zone:
   A shear zone is a geological area where rocks have experienced significant lateral movement in opposite directions. This movement typically occurs along a fault plane, resulting in rocks being displaced horizontally. Shear zones are often associated with intense deformation and can be important for understanding tectonic processes.

2. Block:
   In geology, a block refers to a section of the Earth's crust that is bounded by faults or tectonic boundaries. Blocks can be large or small and are often used to describe distinct regions within a tectonic setting. For example, "crustal blocks" are pieces of the Earth's crust that have different geological characteristics.

3. Fault:
   A fault is a fracture or zone of rock where there has been movement. It's a boundary where rocks on either side have shifted relative to each other. Faults can be caused by tectonic forces, and they are often responsible for earthquakes when they suddenly release accumulated stress.

4. Rift Valley:
   A rift valley is a linear depression or lowland region on the Earth's surface that forms when the Earth's crust is stretched and pulled apart. Rift valleys are often associated with tectonic plate boundaries and are where continents may begin to split apart, eventually forming new ocean basins.

5. Craton:
   A craton is the stable, ancient core of a continent that consists of thick, relatively undeformed layers of the Earth's crust. These regions have been geologically quiet for a long time and are considered the "nuclei" of continents. They are often surrounded by younger geological features.

6. Shield:
   A shield is a large, stable area of exposed Precambrian rock (rock that is more than 600 million years old) on a continent's surface. Shields are typically found within cratons and are characterized by their lack of significant mountain ranges or recent tectonic activity. They often form the central core of continents.

7. Basin:
   A basin is a low-lying, often bowl-shaped, geographical area with defined boundaries that can be either geological or hydrological. Geological basins may contain sedimentary rocks that have accumulated over millions of years and can be associated with depressions in the Earth's crust. Hydrological basins are areas drained by a river system.


Comments

Popular posts from this blog

Photogrammetry – Types of Photographs

In photogrammetry, aerial photographs are categorized based on camera orientation , coverage , and spectral sensitivity . Below is a breakdown of the major types: 1️⃣ Based on Camera Axis Orientation Type Description Key Feature Vertical Photo Taken with the camera axis pointing directly downward (within 3° of vertical). Used for maps and measurements Oblique Photo Taken with the camera axis tilted away from vertical. Covers more area but with distortions Low Oblique: Horizon not visible High Oblique: Horizon visible 2️⃣ Based on Number of Photos Taken Type Description Single Photo One image taken of an area Stereoscopic Pair Two overlapping photos for 3D viewing and depth analysis Strip or Mosaic Series of overlapping photos covering a long area, useful in mapping large regions 3️⃣ Based on Spectral Sensitivity Type Description Application Panchromatic Captures images in black and white General mapping Infrared (IR) Sensitive to infrared radiation Veget...

Photogrammetry – Geometry of a Vertical Photograph

Photogrammetry is the science of making measurements from photographs, especially for mapping and surveying. When the camera axis is perpendicular (vertical) to the ground, the photo is called a vertical photograph , and its geometry is central to accurate mapping.  Elements of Vertical Photo Geometry In a vertical aerial photograph , the geometry is governed by the central projection principle. Here's how it works: 1. Principal Point (P) The point on the photo where the optical axis of the camera intersects the photo plane. It's the geometric center of the photo. 2. Nadir Point (N) The point on the ground directly below the camera at the time of exposure. Ideally, in a perfect vertical photo, the nadir and principal point coincide. 3. Photo Center (C) Usually coincides with the principal point in a vertical photo. 4. Ground Coordinates (X, Y, Z) Real-world (map) coordinates of objects photographed. 5. Flying Height (H) He...

Raster Data Structure

Raster Data Raster data is like a digital photo made up of small squares called cells or pixels . Each cell shows something about that spot — like how high it is (elevation), how hot it is (temperature), or what kind of land it is (forest, water, etc.). Think of it like a graph paper where each box is colored to show what's there. Key Points What's in the cell? Each cell stores information — for example, "water" or "forest." Where is the cell? The cell's location comes from its place in the grid (like row 3, column 5). We don't need to store its exact coordinates. How Do We Decide a Cell's Value? Sometimes, one cell covers more than one thing (like part forest and part water). To choose one value , we can: Center Point: Use whatever feature is in the middle. Most Area: Use the feature that takes up the most space in the cell. Most Important: Use the most important feature (like a road or well), even if it...

Photogrammetry

Photogrammetry is the science of taking measurements from photographs —especially to create maps, models, or 3D images of objects, land, or buildings. Imagine you take two pictures of a mountain from slightly different angles. Photogrammetry uses those photos to figure out the shape, size, and position of the mountain—just like our eyes do when we see in 3D! Concepts and Terminologies 1. Photograph A picture captured by a camera , either from the ground (terrestrial) or from above (aerial or drone). 2. Stereo Pair Two overlapping photos taken from different angles. When seen together, they help create a 3D effect —just like how two human eyes work. 3. Overlap To get a 3D model, photos must overlap each other: Forward overlap : Between two photos in a flight line (usually 60–70%) Side overlap : Between adjacent flight lines (usually 30–40%) 4. Scale The ratio of the photo size to real-world size. Example: A 1:10,000 scale photo means 1 cm on the photo...

Logical Data Model in GIS

In GIS, a logical data model defines how data is structured and interrelated—independent of how it is physically stored or implemented. It serves as a blueprint for designing databases, focusing on the organization of entities, their attributes, and relationships, without tying them to a specific database technology. Key Features Abstraction : The logical model operates at an abstract level, emphasizing the conceptual structure of data rather than the technical details of storage or implementation. Entity-Attribute Relationships : It identifies key entities (objects or concepts) and their attributes (properties), as well as the logical relationships between them. Business Rules : Business logic is embedded in the model to enforce rules, constraints, and conditions that ensure data consistency and accuracy. Technology Independence : The logical model is platform-agnostic—it is not tied to any specific database system or storage format. Visual Representat...