Skip to main content

Geology and Tectonic. Indian Shield


1. Ch (Chattisgarh Basin): Chattisgarh Basin is a geological region in central India known for its sedimentary rock formations. It's important for its mineral resources, including coal and iron ore.

2. CIS (Central Indian Shear Zone): CIS is a tectonic boundary in central India where the Indian Plate interacts with the Eurasian Plate. It's characterized by significant faulting and seismic activity.

3. GR (Godavari Rift): The Godavari Rift is a geological feature associated with the rifting and splitting of the Indian Plate. It's located in the Godavari River basin in southeastern India.

4. M (Madras Block): The Madras Block is a stable continental block in southern India. It's part of the Indian Plate and is not associated with active tectonic processes.

5. Mk (Malanjkhand): Malanjkhand is known for its copper deposits and is one of the largest copper mines in India.

6. MR (Mahanadi Rift): The Mahanadi Rift is a geological feature related to the rifting of the Indian Plate. It's associated with the formation of the Mahanadi River basin in eastern India.

7. N (Nilgiri Block): The Nilgiri Block is a geological region in southern India, known for its ancient rocks and distinct geological history.

8. NS (Narmada-Son Fault Zone): This fault zone extends across central India and marks a significant tectonic boundary where the Indian Plate meets the Eurasian Plate.

9. PC (Palghat-Cauvery Shear Zone): The Palghat-Cauvery Shear Zone is a major geological fault system in southern India, where the Indian Plate interacts with the Eurasian Plate.

10. R (Rengali Province and Kerajang Shear Zone): These are geological regions in eastern India, possibly associated with shear zones and tectonic activity.

11. S (Singhbhum Shear Zone): The Singhbhum Shear Zone is a tectonic feature in eastern India that has played a significant role in the geological history of the region.

12. V (Vindhyan Basin): The Vindhyan Basin is a sedimentary basin in central India known for its extensive rock formations, which hold clues to the Earth's geological past.



1. Shear Zone:
   A shear zone is a geological area where rocks have experienced significant lateral movement in opposite directions. This movement typically occurs along a fault plane, resulting in rocks being displaced horizontally. Shear zones are often associated with intense deformation and can be important for understanding tectonic processes.

2. Block:
   In geology, a block refers to a section of the Earth's crust that is bounded by faults or tectonic boundaries. Blocks can be large or small and are often used to describe distinct regions within a tectonic setting. For example, "crustal blocks" are pieces of the Earth's crust that have different geological characteristics.

3. Fault:
   A fault is a fracture or zone of rock where there has been movement. It's a boundary where rocks on either side have shifted relative to each other. Faults can be caused by tectonic forces, and they are often responsible for earthquakes when they suddenly release accumulated stress.

4. Rift Valley:
   A rift valley is a linear depression or lowland region on the Earth's surface that forms when the Earth's crust is stretched and pulled apart. Rift valleys are often associated with tectonic plate boundaries and are where continents may begin to split apart, eventually forming new ocean basins.

5. Craton:
   A craton is the stable, ancient core of a continent that consists of thick, relatively undeformed layers of the Earth's crust. These regions have been geologically quiet for a long time and are considered the "nuclei" of continents. They are often surrounded by younger geological features.

6. Shield:
   A shield is a large, stable area of exposed Precambrian rock (rock that is more than 600 million years old) on a continent's surface. Shields are typically found within cratons and are characterized by their lack of significant mountain ranges or recent tectonic activity. They often form the central core of continents.

7. Basin:
   A basin is a low-lying, often bowl-shaped, geographical area with defined boundaries that can be either geological or hydrological. Geological basins may contain sedimentary rocks that have accumulated over millions of years and can be associated with depressions in the Earth's crust. Hydrological basins are areas drained by a river system.


Comments

Popular posts from this blog

geostationary and sun-synchronous

Orbital characteristics of Remote sensing satellite geostationary and sun-synchronous  Orbits in Remote Sensing Orbit = the path a satellite follows around the Earth. The orbit determines what part of Earth the satellite can see , how often it revisits , and what applications it is good for . Remote sensing satellites mainly use two standard orbits : Geostationary Orbit (GEO) Sun-Synchronous Orbit (SSO)  Geostationary Satellites (GEO) Characteristics Altitude : ~35,786 km above the equator. Period : 24 hours → same as Earth's rotation. Orbit type : Circular, directly above the equator . Appears "stationary" over one fixed point on Earth. Concepts & Terminologies Geosynchronous = orbit period matches Earth's rotation (24h). Geostationary = special type of geosynchronous orbit directly above equator → looks fixed. Continuous coverage : Can monitor the same area all the time. Applications Weather...

Disaster Management

1. Disaster Risk Analysis → Disaster Risk Reduction → Disaster Management Cycle Disaster Risk Analysis is the first step in managing disasters. It involves assessing potential hazards, identifying vulnerable populations, and estimating possible impacts. Once risks are identified, Disaster Risk Reduction (DRR) strategies come into play. DRR aims to reduce risk and enhance resilience through planning, infrastructure development, and policy enforcement. The Disaster Management Cycle then ensures a structured approach by dividing actions into pre-disaster, during-disaster, and post-disaster phases . Example Connection: Imagine a coastal city prone to cyclones: Risk Analysis identifies low-lying areas and weak infrastructure. Risk Reduction includes building seawalls, enforcing strict building codes, and training residents for emergency situations. The Disaster Management Cycle ensures ongoing preparedness, immediate response during a cyclone, and long-term recovery afterw...

Disaster Risk

Disaster Risk 

Evaluation and Characteristics of Himalayas

Time Period Event / Process Geological Evidence Key Terms & Concepts Late Precambrian – Palaeozoic (>541 Ma – ~250 Ma) India part of Gondwana , north bordered by Cimmerian Superterranes, separated from Eurasia by Paleo-Tethys Ocean . Pan-African granitic intrusions (~500 Ma), unconformity between Ordovician conglomerates & Cambrian sediments. Gondwana, Paleo-Tethys Ocean, Pan-African orogeny, unconformity, granitic intrusions, Cimmerian Superterranes. Early Carboniferous – Early Permian (~359 – 272 Ma) Rifting between India & Cimmerian Superterranes → Neotethys Ocean formation. Rift-related sediments, passive margin sequences. Rifting, Neotethys Ocean, passive continental margin. Norian (210 Ma) – Callovian (160–155 Ma) Gondwana split into East & West; India part of East Gondwana with Australia & Antarctica. Rift basins, oceanic crust formation. Continental breakup, East Gondwana, West Gondwana, oceanic crust. Early Cretaceous (130–125 Ma) India broke fr...

Discrete Detectors and Scanning mirrors Across the track scanner Whisk broom scanner.

Multispectral Imaging Using Discrete Detectors and Scanning Mirrors (Across-Track Scanner or Whisk Broom Scanner) Multispectral Imaging:  This technique involves capturing images of the Earth's surface using multiple sensors that are sensitive to different wavelengths of electromagnetic radiation.  This allows for the identification of various features and materials based on their spectral signatures. Discrete Detectors:  These are individual sensors that are arranged in a linear or array configuration.  Each detector is responsible for measuring the radiation within a specific wavelength band. Scanning Mirrors:  These are optical components that are used to deflect the incoming radiation onto the discrete detectors.  By moving the mirrors,  the sensor can scan across the scene,  capturing data from different points. Across-Track Scanner or Whisk Broom Scanner:  This refers to the scanning mechanism where the mirror moves perpendicular to the direction of flight.  This allows for t...