Skip to main content

Geology and Tectonic. Indian Shield


1. Ch (Chattisgarh Basin): Chattisgarh Basin is a geological region in central India known for its sedimentary rock formations. It's important for its mineral resources, including coal and iron ore.

2. CIS (Central Indian Shear Zone): CIS is a tectonic boundary in central India where the Indian Plate interacts with the Eurasian Plate. It's characterized by significant faulting and seismic activity.

3. GR (Godavari Rift): The Godavari Rift is a geological feature associated with the rifting and splitting of the Indian Plate. It's located in the Godavari River basin in southeastern India.

4. M (Madras Block): The Madras Block is a stable continental block in southern India. It's part of the Indian Plate and is not associated with active tectonic processes.

5. Mk (Malanjkhand): Malanjkhand is known for its copper deposits and is one of the largest copper mines in India.

6. MR (Mahanadi Rift): The Mahanadi Rift is a geological feature related to the rifting of the Indian Plate. It's associated with the formation of the Mahanadi River basin in eastern India.

7. N (Nilgiri Block): The Nilgiri Block is a geological region in southern India, known for its ancient rocks and distinct geological history.

8. NS (Narmada-Son Fault Zone): This fault zone extends across central India and marks a significant tectonic boundary where the Indian Plate meets the Eurasian Plate.

9. PC (Palghat-Cauvery Shear Zone): The Palghat-Cauvery Shear Zone is a major geological fault system in southern India, where the Indian Plate interacts with the Eurasian Plate.

10. R (Rengali Province and Kerajang Shear Zone): These are geological regions in eastern India, possibly associated with shear zones and tectonic activity.

11. S (Singhbhum Shear Zone): The Singhbhum Shear Zone is a tectonic feature in eastern India that has played a significant role in the geological history of the region.

12. V (Vindhyan Basin): The Vindhyan Basin is a sedimentary basin in central India known for its extensive rock formations, which hold clues to the Earth's geological past.



1. Shear Zone:
   A shear zone is a geological area where rocks have experienced significant lateral movement in opposite directions. This movement typically occurs along a fault plane, resulting in rocks being displaced horizontally. Shear zones are often associated with intense deformation and can be important for understanding tectonic processes.

2. Block:
   In geology, a block refers to a section of the Earth's crust that is bounded by faults or tectonic boundaries. Blocks can be large or small and are often used to describe distinct regions within a tectonic setting. For example, "crustal blocks" are pieces of the Earth's crust that have different geological characteristics.

3. Fault:
   A fault is a fracture or zone of rock where there has been movement. It's a boundary where rocks on either side have shifted relative to each other. Faults can be caused by tectonic forces, and they are often responsible for earthquakes when they suddenly release accumulated stress.

4. Rift Valley:
   A rift valley is a linear depression or lowland region on the Earth's surface that forms when the Earth's crust is stretched and pulled apart. Rift valleys are often associated with tectonic plate boundaries and are where continents may begin to split apart, eventually forming new ocean basins.

5. Craton:
   A craton is the stable, ancient core of a continent that consists of thick, relatively undeformed layers of the Earth's crust. These regions have been geologically quiet for a long time and are considered the "nuclei" of continents. They are often surrounded by younger geological features.

6. Shield:
   A shield is a large, stable area of exposed Precambrian rock (rock that is more than 600 million years old) on a continent's surface. Shields are typically found within cratons and are characterized by their lack of significant mountain ranges or recent tectonic activity. They often form the central core of continents.

7. Basin:
   A basin is a low-lying, often bowl-shaped, geographical area with defined boundaries that can be either geological or hydrological. Geological basins may contain sedimentary rocks that have accumulated over millions of years and can be associated with depressions in the Earth's crust. Hydrological basins are areas drained by a river system.


Comments

Popular posts from this blog

Geometric Correction

When satellite or aerial images are captured, they often contain distortions (errors in shape, scale, or position) caused by many factors — like Earth's curvature, satellite motion, terrain height (relief), or the Earth's rotation . These distortions make the image not properly aligned with real-world coordinates (latitude and longitude). 👉 Geometric correction is the process of removing these distortions so that every pixel in the image correctly represents its location on the Earth's surface. After geometric correction, the image becomes geographically referenced and can be used with maps and GIS data. Types  1. Systematic Correction Systematic errors are predictable and can be modeled mathematically. They occur due to the geometry and movement of the satellite sensor or the Earth. Common systematic distortions: Scan skew – due to the motion of the sensor as it scans the Earth. Mirror velocity variation – scanning mirror moves at a va...

RADIOMETRIC CORRECTION

  Radiometric correction is the process of removing sensor and environmental errors from satellite images so that the measured brightness values (Digital Numbers or DNs) truly represent the Earth's surface reflectance or radiance. In other words, it corrects for sensor defects, illumination differences, and atmospheric effects. 1. Detector Response Calibration Satellite sensors use multiple detectors to scan the Earth's surface. Sometimes, each detector responds slightly differently, causing distortions in the image. Calibration adjusts all detectors to respond uniformly. This includes: (a) De-Striping Problem: Sometimes images show light and dark vertical or horizontal stripes (banding). Caused by one or more detectors drifting away from their normal calibration — they record higher or lower values than others. Common in early Landsat MSS data. Effect: Every few lines (e.g., every 6th line) appear consistently brighter or darker. Soluti...

Atmospheric Correction

It is the process of removing the influence of the atmosphere from remotely sensed images so that the data accurately represent the true reflectance of Earth's surface . When a satellite sensor captures an image, the radiation reaching the sensor is affected by gases, water vapor, aerosols, and dust in the atmosphere. These factors scatter and absorb light, changing the brightness and color of the features seen in the image. Although these atmospheric effects are part of the recorded signal, they can distort surface reflectance values , especially when images are compared across different dates or sensors . Therefore, corrections are necessary to make data consistent and physically meaningful. 🔹 Why Do We Need Atmospheric Correction? To retrieve true surface reflectance – It separates the surface signal from atmospheric influence. To ensure comparability – Enables comparing images from different times, seasons, or sensors. To improve visual quality – Remo...

Supervised Classification

In the context of Remote Sensing (RS) and Digital Image Processing (DIP) , supervised classification is the process where an analyst defines "training sites" (Areas of Interest or ROIs) representing known land cover classes (e.g., Water, Forest, Urban). The computer then uses these training samples to teach an algorithm how to classify the rest of the image pixels. The algorithms used to classify these pixels are generally divided into two broad categories: Parametric and Nonparametric decision rules. Parametric Decision Rules These algorithms assume that the pixel values in the training data follow a specific statistical distribution—almost always the Gaussian (Normal) distribution (the "Bell Curve"). Key Concept: They model the data using statistical parameters: the Mean vector ( $\mu$ ) and the Covariance matrix ( $\Sigma$ ) . Analogy: Imagine trying to fit a smooth hill over your data points. If a new point lands high up on the hill, it belongs to that cl...

Pre During and Post Disaster

Disaster management is a structured approach aimed at reducing risks, responding effectively, and ensuring a swift recovery from disasters. It consists of three main phases: Pre-Disaster (Mitigation & Preparedness), During Disaster (Response), and Post-Disaster (Recovery). These phases involve various strategies, policies, and actions to protect lives, property, and the environment. Below is a breakdown of each phase with key concepts, terminologies, and examples. 1. Pre-Disaster Phase (Mitigation and Preparedness) Mitigation: This phase focuses on reducing the severity of a disaster by minimizing risks and vulnerabilities. It involves structural and non-structural measures. Hazard Identification: Recognizing potential natural and human-made hazards (e.g., earthquakes, floods, industrial accidents). Risk Assessment: Evaluating the probability and consequences of disasters using GIS, remote sensing, and historical data. Vulnerability Analysis: Identifying areas and p...