Skip to main content

Minimum distance. Gaussian maximum likelihood . Parallelepiped


Minimum distance to means classification is a supervised classification technique in remote sensing that works by dividing the data into a number of classes based on the mean value of each class. The algorithm works as follows:


First, the mean value of each class is calculated. This is done by taking the average of all the data points in each class.


Next, for each data point, the distance to the mean of each class is calculated. This is done using a distance metric, such as Euclidean distance.


The data point is then assigned to the class with the minimum distance to the mean.


This process is repeated for all data points in the dataset.


Minimum distance to means classification is simple and easy to implement, but it can be sensitive to noise and outliers in the data. It is generally not as accurate as more complex classification algorithms, such as support vector machines or neural networks.


2.

Gaussian maximum likelihood classification is a method of image analysis in remote sensing that involves estimating the probability density function (PDF) of each class in the image and then classifying each pixel based on the class with the highest PDF value.



The PDF of a class is a statistical model that describes the distribution of pixel values within that class. In the case of Gaussian maximum likelihood classification, the PDF is assumed to be a Gaussian, or normal, distribution. This means that the pixel values within the class are assumed to be normally distributed around a mean value, with a certain standard deviation.



To classify each pixel, the PDFs of all classes are calculated using the mean and standard deviation values estimated from the training data. The class with the highest PDF value is then assigned to the pixel.



One advantage of Gaussian maximum likelihood classification is that it can handle continuous variables, such as spectral reflectance values, which can be difficult to classify using other methods. It is also relatively simple to implement and can be easily modified to incorporate additional features or constraints.



However, Gaussian maximum likelihood classification has some limitations. It assumes that the classes are normally distributed, which may not always be the case in real-world data. It is also sensitive to the presence of mixed pixels, or pixels that contain multiple types of land cover.



3

In remote sensing, a parallelepiped is a three-dimensional model used to classify spectral data obtained from a remote sensor. It is a parallelogram with opposite sides parallel, and all its faces are parallelograms.




Parallelepiped classification is a method of image analysis that involves dividing the image data into a set of smaller parallelepipeds, or "bins," and then assigning a class label to each bin based on the characteristics of the pixels within it. This can be done using various techniques, such as k-means clustering or decision tree analysis.




One advantage of parallelepiped classification is that it can be used to analyze large volumes of data quickly, as the bins can be processed in parallel. It is also relatively simple to implement and can be easily modified to incorporate additional features or constraints.




However, parallelepiped classification has some limitations. It can be sensitive to the size and orientation of the bins, and the choice of bin size and orientation can significantly affect the accuracy of the classification. It can also be sensitive to the presence of mixed pixels, or pixels that contain multiple types of land cover.




Comments

Popular posts from this blog

Geology and Tectonic. Indian Shield

1. Ch (Chattisgarh Basin): Chattisgarh Basin is a geological region in central India known for its sedimentary rock formations. It's important for its mineral resources, including coal and iron ore. 2. CIS (Central Indian Shear Zone): CIS is a tectonic boundary in central India where the Indian Plate interacts with the Eurasian Plate. It's characterized by significant faulting and seismic activity. 3. GR (Godavari Rift): The Godavari Rift is a geological feature associated with the rifting and splitting of the Indian Plate. It's located in the Godavari River basin in southeastern India. 4. M (Madras Block): The Madras Block is a stable continental block in southern India. It's part of the Indian Plate and is not associated with active tectonic processes. 5. Mk (Malanjkhand): Malanjkhand is known for its copper deposits and is one of the largest copper mines in India. 6. MR (Mahanadi Rift): The Mahanadi Rift is a geological feature related to the rifting of the Indian Pl...

Morpho-Tectonic Framework of India

The MorphoTectonic Framework of India refers to the combined study of the country's landforms (morphology) and its geological tectonic features. This framework provides insights into how geological forces have shaped India's topography over millions of years. Here's a breakdown of this concept: 1. Morphology: This aspect focuses on the physical features and landforms of India. It includes the study of mountains, plateaus, plains, valleys, rivers, and other surface features. For example, the Himalayas, Western Ghats, IndoGangetic Plains, and Deccan Plateau are prominent morphological features of India. 2. Tectonics: Tectonics deals with the movement and deformation of the Earth's lithosphere (the outermost rigid layer of the Earth). In the case of India, it primarily involves the interactions of the Indian Plate with neighboring tectonic plates. India is situated at the convergence of several major tectonic boundaries:     Collision with the Eurasian Plate: The most sign...

Solar Radiation and Remote Sensing

Satellite Remote Sensing Satellite remote sensing is the science of acquiring information about Earth's surface and atmosphere without physical contact , using sensors mounted on satellites. These sensors detect and record electromagnetic radiation (EMR) that is either emitted or reflected from the Earth's surface. Solar Radiation & Earth's Energy Balance Solar Radiation is the primary source of energy for Earth's climate system. It originates from the Sun and travels through space as electromagnetic waves . Incoming Shortwave Solar Radiation (insolation) consists mostly of ultraviolet, visible, and near-infrared wavelengths . When it reaches Earth, it can be: Absorbed by the atmosphere, clouds, or surface Reflected back to space Scattered by atmospheric particles Outgoing Longwave Radiation is the infrared energy emitted by Earth back into space after absorbing solar energy. This process helps maintain Earth's thermal bala...

Neighbourhood Operations

 Neighbourhood Operations in GIS? In GIS and raster data , neighbourhood operations look at a group of nearby pixels (not just one) to understand or change a pixel's value. Think of it like checking what's around a house before deciding what color to paint it! Why "Neighbourhood"? Each pixel has " neighbours " (just like how your house has nearby houses). Neighbourhood operations check these nearby pixels and do some calculation to get a new value. 1. Aggregations (Summarizing Nearby Values) Aggregation means combining values of several pixels into one. We do this to: Find the average of surrounding pixels Find the minimum or maximum value Smooth the map (make it less rough) 🧒🏻 Example: Imagine checking the test scores of 9 students sitting around you and finding the average score . That's aggregation!  2. Filtering Techniques Filtering is used to improve or highlight features in a raster image, just like f...

Geologic and tectonic framework of the Indian shield

  Major Terms and Regions Explained 1. Indian Shield The Indian Shield refers to the ancient, stable core of the Indian Plate made of hard crystalline rocks. It comprises Archean to Proterozoic rocks that have remained tectonically stable over billions of years. Important Geological Features and Regions ▪️ Ch – Chhattisgarh Basin A sedimentary basin part of the Bastar Craton . Contains rocks of Proterozoic age , mainly sedimentary. Important for understanding the evolution of central India. ▪️ CIS – Central Indian Shear Zone A major tectonic shear zone , separating the Bundelkhand and Bastar cratons . It records intense deformation and metamorphism . Acts as a suture zone , marking ancient tectonic collisions. ▪️ GR – Godavari Rift A rift valley formed due to stretching and thinning of the Earth's crust. Associated with sedimentary basins and hydrocarbon resources . ▪️ M – Madras Block An Archean crustal block in...