Skip to main content

Minimum distance. Gaussian maximum likelihood . Parallelepiped


Minimum distance to means classification is a supervised classification technique in remote sensing that works by dividing the data into a number of classes based on the mean value of each class. The algorithm works as follows:


First, the mean value of each class is calculated. This is done by taking the average of all the data points in each class.


Next, for each data point, the distance to the mean of each class is calculated. This is done using a distance metric, such as Euclidean distance.


The data point is then assigned to the class with the minimum distance to the mean.


This process is repeated for all data points in the dataset.


Minimum distance to means classification is simple and easy to implement, but it can be sensitive to noise and outliers in the data. It is generally not as accurate as more complex classification algorithms, such as support vector machines or neural networks.


2.

Gaussian maximum likelihood classification is a method of image analysis in remote sensing that involves estimating the probability density function (PDF) of each class in the image and then classifying each pixel based on the class with the highest PDF value.



The PDF of a class is a statistical model that describes the distribution of pixel values within that class. In the case of Gaussian maximum likelihood classification, the PDF is assumed to be a Gaussian, or normal, distribution. This means that the pixel values within the class are assumed to be normally distributed around a mean value, with a certain standard deviation.



To classify each pixel, the PDFs of all classes are calculated using the mean and standard deviation values estimated from the training data. The class with the highest PDF value is then assigned to the pixel.



One advantage of Gaussian maximum likelihood classification is that it can handle continuous variables, such as spectral reflectance values, which can be difficult to classify using other methods. It is also relatively simple to implement and can be easily modified to incorporate additional features or constraints.



However, Gaussian maximum likelihood classification has some limitations. It assumes that the classes are normally distributed, which may not always be the case in real-world data. It is also sensitive to the presence of mixed pixels, or pixels that contain multiple types of land cover.



3

In remote sensing, a parallelepiped is a three-dimensional model used to classify spectral data obtained from a remote sensor. It is a parallelogram with opposite sides parallel, and all its faces are parallelograms.




Parallelepiped classification is a method of image analysis that involves dividing the image data into a set of smaller parallelepipeds, or "bins," and then assigning a class label to each bin based on the characteristics of the pixels within it. This can be done using various techniques, such as k-means clustering or decision tree analysis.




One advantage of parallelepiped classification is that it can be used to analyze large volumes of data quickly, as the bins can be processed in parallel. It is also relatively simple to implement and can be easily modified to incorporate additional features or constraints.




However, parallelepiped classification has some limitations. It can be sensitive to the size and orientation of the bins, and the choice of bin size and orientation can significantly affect the accuracy of the classification. It can also be sensitive to the presence of mixed pixels, or pixels that contain multiple types of land cover.




Comments

Popular posts from this blog

Atmospheric Window

The atmospheric window in remote sensing refers to specific wavelength ranges within the electromagnetic spectrum that can pass through the Earth's atmosphere relatively unimpeded. These windows are crucial for remote sensing applications because they allow us to observe the Earth's surface and atmosphere without significant interference from the atmosphere's constituents. Key facts and concepts about atmospheric windows: Visible and Near-Infrared (VNIR) window: This window encompasses wavelengths from approximately 0. 4 to 1. 0 micrometers. It is ideal for observing vegetation, water bodies, and land cover types. Shortwave Infrared (SWIR) window: This window covers wavelengths from approximately 1. 0 to 3. 0 micrometers. It is particularly useful for detecting minerals, water content, and vegetation health. Mid-Infrared (MIR) window: This window spans wavelengths from approximately 3. 0 to 8. 0 micrometers. It is valuable for identifying various materials, incl

DRA Disaster Risk Assessment

Disaster Risk Assessment (DRA): A Professional Overview Disaster Risk Assessment (DRA) is a systematic process used to identify, analyze, and evaluate the potential hazards, vulnerabilities, and risks posed by disasters to people, property, infrastructure, and the environment. It is a critical tool for effective disaster risk management, enabling communities, organizations, and governments to make informed decisions and implement appropriate mitigation measures. Key Components of DRA Hazard Identification: Identifying the types of hazards that could potentially affect a specific area, such as natural disasters (earthquakes, floods, cyclones), technological disasters (industrial accidents, infrastructure failures), or man-made disasters (conflicts, pandemics). Vulnerability Assessment: Evaluating the susceptibility of people, infrastructure, and the environment to the identified hazards. This involves assessing factors such as location, construction quality, socio-economic co

Linear Arrays Along-Track Scanners or Pushbroom Scanners

Multispectral Imaging Using Linear Arrays (Along-Track Scanners or Pushbroom Scanners) Multispectral Imaging: As previously defined, this involves capturing images using multiple sensors that are sensitive to different wavelengths of electromagnetic radiation. Linear Array of Detectors (A): This refers to a row of discrete detectors arranged in a straight line. Each detector is responsible for measuring the radiation within a specific wavelength band. Focal Plane (B): This is the plane where the image is formed by the lens system. It is the location where the detectors are placed to capture the focused image. Formed by Lens Systems (C): The lens system is responsible for collecting and focusing the incoming radiation onto the focal plane. It acts like a camera lens, creating a sharp image of the scene. Ground Resolution Cell (D): As previously defined, this is the smallest area on the ground that can be resolved by a remote sensing sensor. In the case of linear array scanne

Discrete Detectors and Scanning mirrors Across the track scanner Whisk broom scanner.

Multispectral Imaging Using Discrete Detectors and Scanning Mirrors (Across-Track Scanner or Whisk Broom Scanner) Multispectral Imaging:  This technique involves capturing images of the Earth's surface using multiple sensors that are sensitive to different wavelengths of electromagnetic radiation.  This allows for the identification of various features and materials based on their spectral signatures. Discrete Detectors:  These are individual sensors that are arranged in a linear or array configuration.  Each detector is responsible for measuring the radiation within a specific wavelength band. Scanning Mirrors:  These are optical components that are used to deflect the incoming radiation onto the discrete detectors.  By moving the mirrors,  the sensor can scan across the scene,  capturing data from different points. Across-Track Scanner or Whisk Broom Scanner:  This refers to the scanning mechanism where the mirror moves perpendicular to the direction of flight.  This allows for t

Hazard Vulnerability Exposure Risk

Key Concepts in Hazard Identification, Vulnerability Assessment, Exposure Assessment, and Risk Analysis Hazard-Exposure-Vulnerability-Risk (HEVR) Framework: Hazard: A potential event or phenomenon that can cause harm. Exposure: People, assets, or environments in harm's way. Vulnerability: Susceptibility to damage or harm from a hazard. Risk: The potential for loss or damage resulting from the interaction of hazards, exposure, and vulnerability. Risk as a Function: Risk can be calculated using the formula: Risk = Hazard × Vulnerability × Exposure. Reducing any of these factors can decrease overall risk. Types of Hazards: Natural hazards: Earthquakes, floods, tsunamis, landslides, hurricanes. Anthropogenic hazards: Industrial accidents, pollution, infrastructure failure, climate change. Technological hazards: Nuclear accidents, chemical spills. Vulnerability Dimensions: Physical: Infrastructure quality, building codes, location. Social: Age, income, disability, gender, acces