Skip to main content

Solar Radiation and Remote Sensing

Satellite Remote Sensing

Satellite remote sensing is the science of acquiring information about Earth's surface and atmosphere without physical contact, using sensors mounted on satellites. These sensors detect and record electromagnetic radiation (EMR) that is either emitted or reflected from the Earth's surface.

Solar Radiation & Earth's Energy Balance

  • Solar Radiation is the primary source of energy for Earth's climate system. It originates from the Sun and travels through space as electromagnetic waves.

  • Incoming Shortwave Solar Radiation (insolation) consists mostly of ultraviolet, visible, and near-infrared wavelengths. When it reaches Earth, it can be:

    • Absorbed by the atmosphere, clouds, or surface

    • Reflected back to space

    • Scattered by atmospheric particles

  • Outgoing Longwave Radiation is the infrared energy emitted by Earth back into space after absorbing solar energy. This process helps maintain Earth's thermal balance.

Electromagnetic Radiation (EMR) Spectrum

The EMR spectrum encompasses all types of electromagnetic radiation, ranging from gamma rays to radio waves. Remote sensing typically uses the visible, infrared, and microwave portions of the spectrum.

Different materials on Earth interact with different wavelengths in unique ways, which allows satellites to differentiate between water, vegetation, soil, urban areas, etc.

Interaction of EMR with Atmosphere and Surface

When solar radiation enters Earth's atmosphere and reaches the surface, it undergoes several interactions:

  • Absorption: Certain gases and materials absorb specific wavelengths of EMR, converting it into heat. For example, ozone absorbs UV, and water vapor absorbs infrared.

  • Scattering: Small particles and gases deflect radiation in multiple directions. Rayleigh scattering causes the blue sky, while Mie scattering is associated with dust and smoke.

  • Reflection: Some surfaces reflect incoming solar radiation back into the atmosphere. This reflection depends on the surface properties and is central to remote sensing.

  • Refraction: The bending of light as it passes through different media, affecting how radiation travels through the atmosphere.

Blackbody Concept & Earth

  • A Blackbody is an ideal object that absorbs all incoming radiation and re-emits it perfectly. Though Earth is not a perfect blackbody, the blackbody radiation laws (e.g., Planck's Law, Stefan–Boltzmann Law) help us understand Earth's emission of longwave radiation.

Albedo

  • Albedo is the fraction of incoming solar radiation that is reflected by a surface. Surfaces like snow have high albedo (high reflectivity), while forests or oceans have low albedo (high absorption).

    This directly influences Earth's energy budget and is monitored using satellite remote sensing to assess climate change, land cover changes, etc.

Conceptual Link Summary

  1. Solar Radiation from the Sun (mainly shortwave) enters Earth's atmosphere.

  2. It interacts with the atmosphere and surface via absorption, scattering, reflection, and refraction.

  3. Earth's surface emits longwave radiation, part of which escapes to space or is absorbed by greenhouse gases.

  4. These interactions are governed by principles of the EMR spectrum and concepts like blackbody radiation.

  5. Albedo quantifies the reflected portion of incoming solar energy.

  6. All these energy exchanges and surface properties are measured and monitored by satellite remote sensing.


Comments

Popular posts from this blog

Evaluation and Characteristics of Himalayas

Time Period Event / Process Geological Evidence Key Terms & Concepts Late Precambrian – Palaeozoic (>541 Ma – ~250 Ma) India part of Gondwana , north bordered by Cimmerian Superterranes, separated from Eurasia by Paleo-Tethys Ocean . Pan-African granitic intrusions (~500 Ma), unconformity between Ordovician conglomerates & Cambrian sediments. Gondwana, Paleo-Tethys Ocean, Pan-African orogeny, unconformity, granitic intrusions, Cimmerian Superterranes. Early Carboniferous – Early Permian (~359 – 272 Ma) Rifting between India & Cimmerian Superterranes → Neotethys Ocean formation. Rift-related sediments, passive margin sequences. Rifting, Neotethys Ocean, passive continental margin. Norian (210 Ma) – Callovian (160–155 Ma) Gondwana split into East & West; India part of East Gondwana with Australia & Antarctica. Rift basins, oceanic crust formation. Continental breakup, East Gondwana, West Gondwana, oceanic crust. Early Cretaceous (130–125 Ma) India broke fr...

Seismicity and Earthquakes, Isostasy and Gravity

1. Seismicity and Earthquakes in the Indian Subcontinent Key Concept: Seismicity Definition : The occurrence, frequency, and magnitude of earthquakes in a region. In India, seismicity is high due to active tectonic processes . Plate Tectonics 🌏 Indian Plate : Moves northward at about 5 cm/year. Collision with Eurasian Plate : Causes intense crustal deformation , mountain building (Himalayas), and earthquakes. This is an example of a continental-continental collision zone . Seismic Zones of India Classified into Zone II, III, IV, V (Bureau of Indian Standards, BIS). Zone V = highest hazard (e.g., Himalayas, Northeast India). Zone II = lowest hazard (e.g., parts of peninsular India). Earthquake Hazards ⚠️ Himalayas: prone to large shallow-focus earthquakes due to active thrust faulting. Northeast India: complex subduction and strike-slip faults . Examples: 1897 Shillong Earthquake (Magnitude ~8.1) 1950 Assam–Tib...

geostationary and sun-synchronous

Orbital characteristics of Remote sensing satellite geostationary and sun-synchronous  Orbits in Remote Sensing Orbit = the path a satellite follows around the Earth. The orbit determines what part of Earth the satellite can see , how often it revisits , and what applications it is good for . Remote sensing satellites mainly use two standard orbits : Geostationary Orbit (GEO) Sun-Synchronous Orbit (SSO)  Geostationary Satellites (GEO) Characteristics Altitude : ~35,786 km above the equator. Period : 24 hours → same as Earth's rotation. Orbit type : Circular, directly above the equator . Appears "stationary" over one fixed point on Earth. Concepts & Terminologies Geosynchronous = orbit period matches Earth's rotation (24h). Geostationary = special type of geosynchronous orbit directly above equator → looks fixed. Continuous coverage : Can monitor the same area all the time. Applications Weather...

Network data model

GIS, a network data model is used to represent and study things that are connected like a web — for example, roads, rivers, railway tracks, water pipes, or electric lines . It focuses on how things are connected and helps us solve problems like finding the best route, the nearest hospital, or where water will flow. Nodes → Points where things meet or end (e.g., road intersections, railway stations, pumping stations). Edges → Lines connecting the nodes (e.g., roads, pipelines, cables). Topology → The "rules" of connection — which node is linked to which edge. Attributes → Extra details about each part (e.g., road speed limit, pipe size, traffic volume). How It Works 🔍 Make the Network Model Start with a map of lines (roads, pipes, rivers) and mark how they connect. Run Analyses Routing → Find the shortest or fastest path. Closest Facility → Find the nearest hospital, petrol station, etc. Service Area → Find how far y...

Pre During and Post Disaster

Disaster management is a structured approach aimed at reducing risks, responding effectively, and ensuring a swift recovery from disasters. It consists of three main phases: Pre-Disaster (Mitigation & Preparedness), During Disaster (Response), and Post-Disaster (Recovery). These phases involve various strategies, policies, and actions to protect lives, property, and the environment. Below is a breakdown of each phase with key concepts, terminologies, and examples. 1. Pre-Disaster Phase (Mitigation and Preparedness) Mitigation: This phase focuses on reducing the severity of a disaster by minimizing risks and vulnerabilities. It involves structural and non-structural measures. Hazard Identification: Recognizing potential natural and human-made hazards (e.g., earthquakes, floods, industrial accidents). Risk Assessment: Evaluating the probability and consequences of disasters using GIS, remote sensing, and historical data. Vulnerability Analysis: Identifying areas and p...