Skip to main content

Solar Radiation and Remote Sensing

Satellite Remote Sensing

Satellite remote sensing is the science of acquiring information about Earth's surface and atmosphere without physical contact, using sensors mounted on satellites. These sensors detect and record electromagnetic radiation (EMR) that is either emitted or reflected from the Earth's surface.

Solar Radiation & Earth's Energy Balance

  • Solar Radiation is the primary source of energy for Earth's climate system. It originates from the Sun and travels through space as electromagnetic waves.

  • Incoming Shortwave Solar Radiation (insolation) consists mostly of ultraviolet, visible, and near-infrared wavelengths. When it reaches Earth, it can be:

    • Absorbed by the atmosphere, clouds, or surface

    • Reflected back to space

    • Scattered by atmospheric particles

  • Outgoing Longwave Radiation is the infrared energy emitted by Earth back into space after absorbing solar energy. This process helps maintain Earth's thermal balance.

Electromagnetic Radiation (EMR) Spectrum

The EMR spectrum encompasses all types of electromagnetic radiation, ranging from gamma rays to radio waves. Remote sensing typically uses the visible, infrared, and microwave portions of the spectrum.

Different materials on Earth interact with different wavelengths in unique ways, which allows satellites to differentiate between water, vegetation, soil, urban areas, etc.

Interaction of EMR with Atmosphere and Surface

When solar radiation enters Earth's atmosphere and reaches the surface, it undergoes several interactions:

  • Absorption: Certain gases and materials absorb specific wavelengths of EMR, converting it into heat. For example, ozone absorbs UV, and water vapor absorbs infrared.

  • Scattering: Small particles and gases deflect radiation in multiple directions. Rayleigh scattering causes the blue sky, while Mie scattering is associated with dust and smoke.

  • Reflection: Some surfaces reflect incoming solar radiation back into the atmosphere. This reflection depends on the surface properties and is central to remote sensing.

  • Refraction: The bending of light as it passes through different media, affecting how radiation travels through the atmosphere.

Blackbody Concept & Earth

  • A Blackbody is an ideal object that absorbs all incoming radiation and re-emits it perfectly. Though Earth is not a perfect blackbody, the blackbody radiation laws (e.g., Planck's Law, Stefan–Boltzmann Law) help us understand Earth's emission of longwave radiation.

Albedo

  • Albedo is the fraction of incoming solar radiation that is reflected by a surface. Surfaces like snow have high albedo (high reflectivity), while forests or oceans have low albedo (high absorption).

    This directly influences Earth's energy budget and is monitored using satellite remote sensing to assess climate change, land cover changes, etc.

Conceptual Link Summary

  1. Solar Radiation from the Sun (mainly shortwave) enters Earth's atmosphere.

  2. It interacts with the atmosphere and surface via absorption, scattering, reflection, and refraction.

  3. Earth's surface emits longwave radiation, part of which escapes to space or is absorbed by greenhouse gases.

  4. These interactions are governed by principles of the EMR spectrum and concepts like blackbody radiation.

  5. Albedo quantifies the reflected portion of incoming solar energy.

  6. All these energy exchanges and surface properties are measured and monitored by satellite remote sensing.


Comments

Popular posts from this blog

geostationary and sun-synchronous

Orbital characteristics of Remote sensing satellite geostationary and sun-synchronous  Orbits in Remote Sensing Orbit = the path a satellite follows around the Earth. The orbit determines what part of Earth the satellite can see , how often it revisits , and what applications it is good for . Remote sensing satellites mainly use two standard orbits : Geostationary Orbit (GEO) Sun-Synchronous Orbit (SSO)  Geostationary Satellites (GEO) Characteristics Altitude : ~35,786 km above the equator. Period : 24 hours → same as Earth's rotation. Orbit type : Circular, directly above the equator . Appears "stationary" over one fixed point on Earth. Concepts & Terminologies Geosynchronous = orbit period matches Earth's rotation (24h). Geostationary = special type of geosynchronous orbit directly above equator → looks fixed. Continuous coverage : Can monitor the same area all the time. Applications Weather...

Disaster Management

1. Disaster Risk Analysis → Disaster Risk Reduction → Disaster Management Cycle Disaster Risk Analysis is the first step in managing disasters. It involves assessing potential hazards, identifying vulnerable populations, and estimating possible impacts. Once risks are identified, Disaster Risk Reduction (DRR) strategies come into play. DRR aims to reduce risk and enhance resilience through planning, infrastructure development, and policy enforcement. The Disaster Management Cycle then ensures a structured approach by dividing actions into pre-disaster, during-disaster, and post-disaster phases . Example Connection: Imagine a coastal city prone to cyclones: Risk Analysis identifies low-lying areas and weak infrastructure. Risk Reduction includes building seawalls, enforcing strict building codes, and training residents for emergency situations. The Disaster Management Cycle ensures ongoing preparedness, immediate response during a cyclone, and long-term recovery afterw...

Linear Arrays Along-Track Scanners or Pushbroom Scanners

Multispectral Imaging Using Linear Arrays (Along-Track Scanners or Pushbroom Scanners) Multispectral Imaging: As previously defined, this involves capturing images using multiple sensors that are sensitive to different wavelengths of electromagnetic radiation. Linear Array of Detectors (A): This refers to a row of discrete detectors arranged in a straight line. Each detector is responsible for measuring the radiation within a specific wavelength band. Focal Plane (B): This is the plane where the image is formed by the lens system. It is the location where the detectors are placed to capture the focused image. Formed by Lens Systems (C): The lens system is responsible for collecting and focusing the incoming radiation onto the focal plane. It acts like a camera lens, creating a sharp image of the scene. Ground Resolution Cell (D): As previously defined, this is the smallest area on the ground that can be resolved by a remote sensing sensor. In the case of linear array scanne...

Discrete Detectors and Scanning mirrors Across the track scanner Whisk broom scanner.

Multispectral Imaging Using Discrete Detectors and Scanning Mirrors (Across-Track Scanner or Whisk Broom Scanner) Multispectral Imaging:  This technique involves capturing images of the Earth's surface using multiple sensors that are sensitive to different wavelengths of electromagnetic radiation.  This allows for the identification of various features and materials based on their spectral signatures. Discrete Detectors:  These are individual sensors that are arranged in a linear or array configuration.  Each detector is responsible for measuring the radiation within a specific wavelength band. Scanning Mirrors:  These are optical components that are used to deflect the incoming radiation onto the discrete detectors.  By moving the mirrors,  the sensor can scan across the scene,  capturing data from different points. Across-Track Scanner or Whisk Broom Scanner:  This refers to the scanning mechanism where the mirror moves perpendicular to the direction of flight.  This allows for t...

Disaster Risk

Disaster Risk