Skip to main content

Solar Radiation and Remote Sensing

Satellite Remote Sensing

Satellite remote sensing is the science of acquiring information about Earth's surface and atmosphere without physical contact, using sensors mounted on satellites. These sensors detect and record electromagnetic radiation (EMR) that is either emitted or reflected from the Earth's surface.

Solar Radiation & Earth's Energy Balance

  • Solar Radiation is the primary source of energy for Earth's climate system. It originates from the Sun and travels through space as electromagnetic waves.

  • Incoming Shortwave Solar Radiation (insolation) consists mostly of ultraviolet, visible, and near-infrared wavelengths. When it reaches Earth, it can be:

    • Absorbed by the atmosphere, clouds, or surface

    • Reflected back to space

    • Scattered by atmospheric particles

  • Outgoing Longwave Radiation is the infrared energy emitted by Earth back into space after absorbing solar energy. This process helps maintain Earth's thermal balance.

Electromagnetic Radiation (EMR) Spectrum

The EMR spectrum encompasses all types of electromagnetic radiation, ranging from gamma rays to radio waves. Remote sensing typically uses the visible, infrared, and microwave portions of the spectrum.

Different materials on Earth interact with different wavelengths in unique ways, which allows satellites to differentiate between water, vegetation, soil, urban areas, etc.

Interaction of EMR with Atmosphere and Surface

When solar radiation enters Earth's atmosphere and reaches the surface, it undergoes several interactions:

  • Absorption: Certain gases and materials absorb specific wavelengths of EMR, converting it into heat. For example, ozone absorbs UV, and water vapor absorbs infrared.

  • Scattering: Small particles and gases deflect radiation in multiple directions. Rayleigh scattering causes the blue sky, while Mie scattering is associated with dust and smoke.

  • Reflection: Some surfaces reflect incoming solar radiation back into the atmosphere. This reflection depends on the surface properties and is central to remote sensing.

  • Refraction: The bending of light as it passes through different media, affecting how radiation travels through the atmosphere.

Blackbody Concept & Earth

  • A Blackbody is an ideal object that absorbs all incoming radiation and re-emits it perfectly. Though Earth is not a perfect blackbody, the blackbody radiation laws (e.g., Planck's Law, Stefan–Boltzmann Law) help us understand Earth's emission of longwave radiation.

Albedo

  • Albedo is the fraction of incoming solar radiation that is reflected by a surface. Surfaces like snow have high albedo (high reflectivity), while forests or oceans have low albedo (high absorption).

    This directly influences Earth's energy budget and is monitored using satellite remote sensing to assess climate change, land cover changes, etc.

Conceptual Link Summary

  1. Solar Radiation from the Sun (mainly shortwave) enters Earth's atmosphere.

  2. It interacts with the atmosphere and surface via absorption, scattering, reflection, and refraction.

  3. Earth's surface emits longwave radiation, part of which escapes to space or is absorbed by greenhouse gases.

  4. These interactions are governed by principles of the EMR spectrum and concepts like blackbody radiation.

  5. Albedo quantifies the reflected portion of incoming solar energy.

  6. All these energy exchanges and surface properties are measured and monitored by satellite remote sensing.


Comments

Popular posts from this blog

Geologic and tectonic framework of the Indian shield

  Major Terms and Regions Explained 1. Indian Shield The Indian Shield refers to the ancient, stable core of the Indian Plate made of hard crystalline rocks. It comprises Archean to Proterozoic rocks that have remained tectonically stable over billions of years. Important Geological Features and Regions ▪️ Ch – Chhattisgarh Basin A sedimentary basin part of the Bastar Craton . Contains rocks of Proterozoic age , mainly sedimentary. Important for understanding the evolution of central India. ▪️ CIS – Central Indian Shear Zone A major tectonic shear zone , separating the Bundelkhand and Bastar cratons . It records intense deformation and metamorphism . Acts as a suture zone , marking ancient tectonic collisions. ▪️ GR – Godavari Rift A rift valley formed due to stretching and thinning of the Earth's crust. Associated with sedimentary basins and hydrocarbon resources . ▪️ M – Madras Block An Archean crustal block in...

Geology and Tectonic. Indian Shield

1. Ch (Chattisgarh Basin): Chattisgarh Basin is a geological region in central India known for its sedimentary rock formations. It's important for its mineral resources, including coal and iron ore. 2. CIS (Central Indian Shear Zone): CIS is a tectonic boundary in central India where the Indian Plate interacts with the Eurasian Plate. It's characterized by significant faulting and seismic activity. 3. GR (Godavari Rift): The Godavari Rift is a geological feature associated with the rifting and splitting of the Indian Plate. It's located in the Godavari River basin in southeastern India. 4. M (Madras Block): The Madras Block is a stable continental block in southern India. It's part of the Indian Plate and is not associated with active tectonic processes. 5. Mk (Malanjkhand): Malanjkhand is known for its copper deposits and is one of the largest copper mines in India. 6. MR (Mahanadi Rift): The Mahanadi Rift is a geological feature related to the rifting of the Indian Pl...

Evaluation and Characteristics of Himalayas

Time Period Event / Process Geological Evidence Key Terms & Concepts Late Precambrian – Palaeozoic (>541 Ma – ~250 Ma) India part of Gondwana , north bordered by Cimmerian Superterranes, separated from Eurasia by Paleo-Tethys Ocean . Pan-African granitic intrusions (~500 Ma), unconformity between Ordovician conglomerates & Cambrian sediments. Gondwana, Paleo-Tethys Ocean, Pan-African orogeny, unconformity, granitic intrusions, Cimmerian Superterranes. Early Carboniferous – Early Permian (~359 – 272 Ma) Rifting between India & Cimmerian Superterranes → Neotethys Ocean formation. Rift-related sediments, passive margin sequences. Rifting, Neotethys Ocean, passive continental margin. Norian (210 Ma) – Callovian (160–155 Ma) Gondwana split into East & West; India part of East Gondwana with Australia & Antarctica. Rift basins, oceanic crust formation. Continental breakup, East Gondwana, West Gondwana, oceanic crust. Early Cretaceous (130–125 Ma) India broke fr...

Seismicity and Earthquakes, Isostasy and Gravity

1. Seismicity and Earthquakes in the Indian Subcontinent Key Concept: Seismicity Definition : The occurrence, frequency, and magnitude of earthquakes in a region. In India, seismicity is high due to active tectonic processes . Plate Tectonics 🌏 Indian Plate : Moves northward at about 5 cm/year. Collision with Eurasian Plate : Causes intense crustal deformation , mountain building (Himalayas), and earthquakes. This is an example of a continental-continental collision zone . Seismic Zones of India Classified into Zone II, III, IV, V (Bureau of Indian Standards, BIS). Zone V = highest hazard (e.g., Himalayas, Northeast India). Zone II = lowest hazard (e.g., parts of peninsular India). Earthquake Hazards ⚠️ Himalayas: prone to large shallow-focus earthquakes due to active thrust faulting. Northeast India: complex subduction and strike-slip faults . Examples: 1897 Shillong Earthquake (Magnitude ~8.1) 1950 Assam–Tib...

Vector geoprocessing - Clipping, Erase, identify, Union & Intersection

Think of your vector data (points, lines, polygons) like shapes drawn on a transparent sheet. Geoprocessing is just cutting, joining, or comparing those shapes to get new shapes or information. 1. Clipping ✂️ Imagine you have a big map and you only want to keep a part of it (like cutting a photo into a smaller rectangle). You use another shape (like the boundary of a district) to "clip" and keep only what is inside. Result: Only the data inside the clipping shape remains. 2. Erase 🚫 Opposite of clipping. You remove (erase) the area of one shape from another shape. Example: You have a city map and want to remove all the park areas from it. 3. Identify 🔍 This checks which features from one layer fall inside (or touch) another layer. Example: Identify all the schools inside a flood zone. 4. Union 🤝 Combines two shapes together and keeps everything from both. Works like stacking two transparent sheets and redrawing t...