Skip to main content

Seismicity and Earthquakes, Isostasy and Gravity


1. Seismicity and Earthquakes in the Indian Subcontinent

Key Concept: Seismicity

  • Definition: The occurrence, frequency, and magnitude of earthquakes in a region.

  • In India, seismicity is high due to active tectonic processes.

Plate Tectonics 🌏

  • Indian Plate: Moves northward at about 5 cm/year.

  • Collision with Eurasian Plate: Causes intense crustal deformation, mountain building (Himalayas), and earthquakes.

  • This is an example of a continental-continental collision zone.

Seismic Zones of India

  • Classified into Zone II, III, IV, V (Bureau of Indian Standards, BIS).

  • Zone V = highest hazard (e.g., Himalayas, Northeast India).

  • Zone II = lowest hazard (e.g., parts of peninsular India).

Earthquake Hazards ⚠️

  • Himalayas: prone to large shallow-focus earthquakes due to active thrust faulting.

  • Northeast India: complex subduction and strike-slip faults.

  • Examples:

    • 1897 Shillong Earthquake (Magnitude ~8.1)

    • 1950 Assam–Tibet Earthquake (Magnitude ~8.6)

Seismicity Parameters 📊

  • b-value: Describes the frequency–magnitude relationship (from Gutenberg–Richter law).

    • High b-value → more small earthquakes; low b-value → more large earthquakes.

  • Omori's p-value: Describes aftershock decay rate with time.

  • Fractal dimension: Quantifies fault network complexity.

Strain Rate and Earthquake Magnitude

  • Strain rate: The rate at which rocks deform due to tectonic forces.

  • Some studies show areas with low strain rates can produce larger earthquakes, as stress builds up over a longer period.


2. Isostasy and Gravity in the Indian Context

Isostatic Equilibrium ⚖️

  • Definition: The state where the Earth's crust "floats" on the denser mantle, like ice on water.

  • Controlled by thickness and density of the crust.

  • Explains why the Himalayas are so high (thick crust) and Indo-Gangetic plains are low (thinner crust).

Topographic Variations

  • Himalayas: Thick crust (up to 70 km) → high elevation.

  • Peninsular India: Stable craton with moderate elevations.

  • Coastal plains: Low elevation due to thin crust.

Gravity Anomalies

  • Definition: Deviations from the expected gravity value at a location.

  • Positive anomalies: Denser materials beneath (e.g., mafic intrusions, mountain roots).

  • Negative anomalies: Less dense materials or crustal thickening.

Link to Seismicity

  • Example:

    • Indus–Kohistan region: Gravity highs → associated with thrust faults and crustal earthquakes.

    • Hindu Kush: Gravity lows → linked to intermediate-depth earthquakes.

Crustal Structure from Gravity Data

  • Moho depth: Boundary between crust and mantle (deeper beneath Himalayas).

  • Basement structures: Ridges, depressions influence stress distribution.

  • Lithospheric flexure: Bending of crust due to mountain loads or sediment weight, visible in gravity profiles.

Scientific Applications

  • Gravity + seismic data help:

    • Map fault zones.

    • Predict earthquake-prone areas.

    • Model tectonic evolution of the subcontinent.

The seismicity of the Indian subcontinent is mainly due to the northward movement of the Indian plate and its collision with the Eurasian plate.
Isostasy explains the height differences (Himalayas vs plains), and gravity anomalies reveal hidden crustal structures that often correlate with earthquake zones.
Understanding plate tectonics, isostatic balance, and gravity variations together helps geoscientists better predict and assess earthquake hazards.



Comments

Popular posts from this blog

Evaluation and Characteristics of Himalayas

Time Period Event / Process Geological Evidence Key Terms & Concepts Late Precambrian – Palaeozoic (>541 Ma – ~250 Ma) India part of Gondwana , north bordered by Cimmerian Superterranes, separated from Eurasia by Paleo-Tethys Ocean . Pan-African granitic intrusions (~500 Ma), unconformity between Ordovician conglomerates & Cambrian sediments. Gondwana, Paleo-Tethys Ocean, Pan-African orogeny, unconformity, granitic intrusions, Cimmerian Superterranes. Early Carboniferous – Early Permian (~359 – 272 Ma) Rifting between India & Cimmerian Superterranes → Neotethys Ocean formation. Rift-related sediments, passive margin sequences. Rifting, Neotethys Ocean, passive continental margin. Norian (210 Ma) – Callovian (160–155 Ma) Gondwana split into East & West; India part of East Gondwana with Australia & Antarctica. Rift basins, oceanic crust formation. Continental breakup, East Gondwana, West Gondwana, oceanic crust. Early Cretaceous (130–125 Ma) India broke fr...

geostationary and sun-synchronous

Orbital characteristics of Remote sensing satellite geostationary and sun-synchronous  Orbits in Remote Sensing Orbit = the path a satellite follows around the Earth. The orbit determines what part of Earth the satellite can see , how often it revisits , and what applications it is good for . Remote sensing satellites mainly use two standard orbits : Geostationary Orbit (GEO) Sun-Synchronous Orbit (SSO)  Geostationary Satellites (GEO) Characteristics Altitude : ~35,786 km above the equator. Period : 24 hours → same as Earth's rotation. Orbit type : Circular, directly above the equator . Appears "stationary" over one fixed point on Earth. Concepts & Terminologies Geosynchronous = orbit period matches Earth's rotation (24h). Geostationary = special type of geosynchronous orbit directly above equator → looks fixed. Continuous coverage : Can monitor the same area all the time. Applications Weather...

Network data model

GIS, a network data model is used to represent and study things that are connected like a web — for example, roads, rivers, railway tracks, water pipes, or electric lines . It focuses on how things are connected and helps us solve problems like finding the best route, the nearest hospital, or where water will flow. Nodes → Points where things meet or end (e.g., road intersections, railway stations, pumping stations). Edges → Lines connecting the nodes (e.g., roads, pipelines, cables). Topology → The "rules" of connection — which node is linked to which edge. Attributes → Extra details about each part (e.g., road speed limit, pipe size, traffic volume). How It Works 🔍 Make the Network Model Start with a map of lines (roads, pipes, rivers) and mark how they connect. Run Analyses Routing → Find the shortest or fastest path. Closest Facility → Find the nearest hospital, petrol station, etc. Service Area → Find how far y...

Pre During and Post Disaster

Disaster management is a structured approach aimed at reducing risks, responding effectively, and ensuring a swift recovery from disasters. It consists of three main phases: Pre-Disaster (Mitigation & Preparedness), During Disaster (Response), and Post-Disaster (Recovery). These phases involve various strategies, policies, and actions to protect lives, property, and the environment. Below is a breakdown of each phase with key concepts, terminologies, and examples. 1. Pre-Disaster Phase (Mitigation and Preparedness) Mitigation: This phase focuses on reducing the severity of a disaster by minimizing risks and vulnerabilities. It involves structural and non-structural measures. Hazard Identification: Recognizing potential natural and human-made hazards (e.g., earthquakes, floods, industrial accidents). Risk Assessment: Evaluating the probability and consequences of disasters using GIS, remote sensing, and historical data. Vulnerability Analysis: Identifying areas and p...