Skip to main content

Seismicity and Earthquakes, Isostasy and Gravity


1. Seismicity and Earthquakes in the Indian Subcontinent

Key Concept: Seismicity

  • Definition: The occurrence, frequency, and magnitude of earthquakes in a region.

  • In India, seismicity is high due to active tectonic processes.

Plate Tectonics ๐ŸŒ

  • Indian Plate: Moves northward at about 5 cm/year.

  • Collision with Eurasian Plate: Causes intense crustal deformation, mountain building (Himalayas), and earthquakes.

  • This is an example of a continental-continental collision zone.

Seismic Zones of India

  • Classified into Zone II, III, IV, V (Bureau of Indian Standards, BIS).

  • Zone V = highest hazard (e.g., Himalayas, Northeast India).

  • Zone II = lowest hazard (e.g., parts of peninsular India).

Earthquake Hazards ⚠️

  • Himalayas: prone to large shallow-focus earthquakes due to active thrust faulting.

  • Northeast India: complex subduction and strike-slip faults.

  • Examples:

    • 1897 Shillong Earthquake (Magnitude ~8.1)

    • 1950 Assam–Tibet Earthquake (Magnitude ~8.6)

Seismicity Parameters ๐Ÿ“Š

  • b-value: Describes the frequency–magnitude relationship (from Gutenberg–Richter law).

    • High b-value → more small earthquakes; low b-value → more large earthquakes.

  • Omori's p-value: Describes aftershock decay rate with time.

  • Fractal dimension: Quantifies fault network complexity.

Strain Rate and Earthquake Magnitude

  • Strain rate: The rate at which rocks deform due to tectonic forces.

  • Some studies show areas with low strain rates can produce larger earthquakes, as stress builds up over a longer period.


2. Isostasy and Gravity in the Indian Context

Isostatic Equilibrium ⚖️

  • Definition: The state where the Earth's crust "floats" on the denser mantle, like ice on water.

  • Controlled by thickness and density of the crust.

  • Explains why the Himalayas are so high (thick crust) and Indo-Gangetic plains are low (thinner crust).

Topographic Variations

  • Himalayas: Thick crust (up to 70 km) → high elevation.

  • Peninsular India: Stable craton with moderate elevations.

  • Coastal plains: Low elevation due to thin crust.

Gravity Anomalies

  • Definition: Deviations from the expected gravity value at a location.

  • Positive anomalies: Denser materials beneath (e.g., mafic intrusions, mountain roots).

  • Negative anomalies: Less dense materials or crustal thickening.

Link to Seismicity

  • Example:

    • Indus–Kohistan region: Gravity highs → associated with thrust faults and crustal earthquakes.

    • Hindu Kush: Gravity lows → linked to intermediate-depth earthquakes.

Crustal Structure from Gravity Data

  • Moho depth: Boundary between crust and mantle (deeper beneath Himalayas).

  • Basement structures: Ridges, depressions influence stress distribution.

  • Lithospheric flexure: Bending of crust due to mountain loads or sediment weight, visible in gravity profiles.

Scientific Applications

  • Gravity + seismic data help:

    • Map fault zones.

    • Predict earthquake-prone areas.

    • Model tectonic evolution of the subcontinent.

The seismicity of the Indian subcontinent is mainly due to the northward movement of the Indian plate and its collision with the Eurasian plate.
Isostasy explains the height differences (Himalayas vs plains), and gravity anomalies reveal hidden crustal structures that often correlate with earthquake zones.
Understanding plate tectonics, isostatic balance, and gravity variations together helps geoscientists better predict and assess earthquake hazards.



Comments

Popular posts from this blog

Platforms in Remote Sensing

In remote sensing, a platform is the physical structure or vehicle that carries a sensor (camera, scanner, radar, etc.) to observe and collect information about the Earth's surface. Platforms are classified mainly by their altitude and mobility : Ground-Based Platforms Definition : Sensors mounted on the Earth's surface or very close to it. Examples : Tripods, towers, ground vehicles, handheld instruments. Applications : Calibration and validation of satellite data Detailed local studies (e.g., soil properties, vegetation health, air quality) Strength : High spatial detail but limited coverage. Airborne Platforms Definition : Sensors carried by aircraft, balloons, or drones (UAVs). Altitude : A few hundred meters to ~20 km. Examples : Airplanes with multispectral scanners UAVs with high-resolution cameras or LiDAR High-altitude balloons (stratospheric platforms) Applications : Local-to-regional mapping ...

Types of Remote Sensing

Remote Sensing means collecting information about the Earth's surface without touching it , usually using satellites, aircraft, or drones . There are different types of remote sensing based on the energy source and the wavelength region used. ๐Ÿ›ฐ️ 1. Active Remote Sensing ๐Ÿ“˜ Concept: In active remote sensing , the sensor sends out its own energy (like a signal or pulse) to the Earth's surface. The sensor then records the reflected or backscattered energy that comes back from the surface. ⚙️ Key Terminology: Transmitter: sends energy (like a radar pulse or laser beam). Receiver: detects the energy that bounces back. Backscatter: energy that is reflected back to the sensor. ๐Ÿ“Š Examples of Active Sensors: RADAR (Radio Detection and Ranging): Uses microwave signals to detect surface roughness, soil moisture, or ocean waves. LiDAR (Light Detection and Ranging): Uses laser light (near-infrared) to measure elevation, vegetation...

Optical Sensors in Remote Sensing

1. What Are Optical Sensors? Optical sensors are remote sensing instruments that detect solar radiation reflected or emitted from the Earth's surface in specific portions of the electromagnetic spectrum (EMS) . They mainly work in: Visible region (0.4–0.7 ยตm) Near-Infrared – NIR (0.7–1.3 ยตm) Shortwave Infrared – SWIR (1.3–3.0 ยตm) Thermal Infrared – TIR (8–14 ยตm) — emitted energy, not reflected Optical sensors capture spectral signatures of surface features. Each object reflects/absorbs energy differently, creating a unique spectral response pattern . a) Electromagnetic Spectrum (EMS) The continuous range of wavelengths. Optical sensing uses solar reflective bands and sometimes thermal bands . b) Spectral Signature The unique pattern of reflectance or absorbance of an object across wavelengths. Example: Vegetation reflects strongly in NIR Water absorbs strongly in NIR and SWIR (appears dark) c) Radiance and Reflectance Radi...

Resolution of Sensors in Remote Sensing

Spatial Resolution ๐Ÿ—บ️ Definition : The smallest size of an object on the ground that a sensor can detect. Measured as : The size of a pixel on the ground (in meters). Example : Landsat → 30 m (each pixel = 30 × 30 m on Earth). WorldView-3 → 0.31 m (very detailed, you can see cars). Fact : Higher spatial resolution = finer details, but smaller coverage. Spectral Resolution ๐ŸŒˆ Definition : The ability of a sensor to capture information in different parts (bands) of the electromagnetic spectrum . Measured as : The number and width of spectral bands. Types : Panchromatic (1 broad band, e.g., black & white image). Multispectral (several broad bands, e.g., Landsat with 7–13 bands). Hyperspectral (hundreds of very narrow bands, e.g., AVIRIS). Fact : Higher spectral resolution = better identification of materials (e.g., minerals, vegetation types). Radiometric Resolution ๐Ÿ“Š Definition : The ability of a sensor to ...

geostationary and sun-synchronous

Orbital characteristics of Remote sensing satellite geostationary and sun-synchronous  Orbits in Remote Sensing Orbit = the path a satellite follows around the Earth. The orbit determines what part of Earth the satellite can see , how often it revisits , and what applications it is good for . Remote sensing satellites mainly use two standard orbits : Geostationary Orbit (GEO) Sun-Synchronous Orbit (SSO)  Geostationary Satellites (GEO) Characteristics Altitude : ~35,786 km above the equator. Period : 24 hours → same as Earth's rotation. Orbit type : Circular, directly above the equator . Appears "stationary" over one fixed point on Earth. Concepts & Terminologies Geosynchronous = orbit period matches Earth's rotation (24h). Geostationary = special type of geosynchronous orbit directly above equator → looks fixed. Continuous coverage : Can monitor the same area all the time. Applications Weather...