Skip to main content

Pre During and Post Disaster


Disaster management is a structured approach aimed at reducing risks, responding effectively, and ensuring a swift recovery from disasters. It consists of three main phases: Pre-Disaster (Mitigation & Preparedness), During Disaster (Response), and Post-Disaster (Recovery). These phases involve various strategies, policies, and actions to protect lives, property, and the environment. Below is a breakdown of each phase with key concepts, terminologies, and examples.


1. Pre-Disaster Phase (Mitigation and Preparedness)

Mitigation:

This phase focuses on reducing the severity of a disaster by minimizing risks and vulnerabilities. It involves structural and non-structural measures.

    • Hazard Identification: Recognizing potential natural and human-made hazards (e.g., earthquakes, floods, industrial accidents).
    • Risk Assessment: Evaluating the probability and consequences of disasters using GIS, remote sensing, and historical data.
    • Vulnerability Analysis: Identifying areas and populations at high risk (e.g., coastal communities prone to cyclones).
    • Structural Mitigation: Physical interventions such as earthquake-resistant buildings, flood barriers, and landslide prevention walls.
    • Non-Structural Mitigation: Policies, regulations, and education programs to promote safer practices (e.g., land-use zoning, environmental protection laws).
  • Examples:

    • Retrofitting old buildings to withstand earthquakes (Japan).
    • Constructing embankments and levees to control floods (Netherlands).
    • Enforcing building codes to reduce fire hazards in urban areas (United States).

Preparedness:

This involves planning and training to improve response capabilities before a disaster strikes.

    • Early Warning Systems (EWS): Technologies like Doppler radar, satellite monitoring, and AI-based prediction models to detect hazards.
    • Emergency Response Plans: Protocols for evacuation, rescue, and coordination (e.g., Incident Command System, ICS).
    • Public Awareness & Training: Conducting mock drills, education campaigns, and workshops on disaster preparedness.
    • Stockpiling Emergency Supplies: Storing food, water, first-aid kits, and emergency power supplies.
    • Community-Based Disaster Risk Reduction (CBDRR): Local-level preparedness through community participation and knowledge sharing.
  • Examples:

    • The Indian Ocean Tsunami Warning System provides real-time alerts for coastal communities.
    • FEMA's "Ready Campaign" in the U.S. educates citizens on emergency preparedness.
    • Japan's annual earthquake and tsunami drills help citizens respond effectively.

2. During Disaster Phase (Response)

This phase focuses on immediate actions to minimize casualties and damage once a disaster occurs.

    • Emergency Operations Center (EOC): A centralized command center that coordinates disaster response efforts.
    • Evacuation and Relocation: Moving at-risk populations to safer areas using planned routes and shelters.
    • Search and Rescue (SAR): Locating and assisting trapped or injured individuals (e.g., National Disaster Response Force, NDRF, in India).
    • First Responders: Personnel like firefighters, medical teams, and law enforcement deployed for immediate assistance.
    • Relief Distribution: Providing essential resources such as food, water, and medical aid.
    • Damage Assessment: Rapid evaluation of affected areas using drones, GIS mapping, and ground surveys.
    • Crisis Communication: Disseminating real-time information through media, social networks, and emergency apps.
  • Examples:

    • The deployment of the Red Cross and FEMA teams after Hurricane Katrina in 2005.
    • Use of UAVs (drones) to assess earthquake damage in Nepal (2015).
    • The Indian Army's swift response during the Uttarakhand floods (2013).

3. Post-Disaster Phase (Recovery)

This phase involves restoring normalcy by rehabilitating communities and rebuilding infrastructure.

    • Short-Term Recovery: Providing temporary housing, medical care, and restoring utilities (e.g., electricity, water supply).
    • Long-Term Recovery: Rebuilding infrastructure, restoring livelihoods, and ensuring economic stability.
    • Rehabilitation: Addressing the psychological and social impacts of disasters through counseling and community support.
    • Reconstruction: Developing resilient infrastructure using improved technologies (e.g., earthquake-resistant schools).
    • Economic Recovery: Supporting businesses, providing financial aid, and reviving local industries.
    • Disaster Risk Reduction (DRR): Learning from past disasters to improve future preparedness and mitigation strategies.
  • Examples:

    • The "Build Back Better" initiative after the 2004 Indian Ocean tsunami focused on resilient reconstruction.
    • Haiti's long-term reconstruction efforts following the 2010 earthquake.
    • Post-disaster livelihood programs in the Philippines after Typhoon Haiyan (2013).

Comments

Popular posts from this blog

Photogrammetry – Types of Photographs

In photogrammetry, aerial photographs are categorized based on camera orientation , coverage , and spectral sensitivity . Below is a breakdown of the major types: 1️⃣ Based on Camera Axis Orientation Type Description Key Feature Vertical Photo Taken with the camera axis pointing directly downward (within 3° of vertical). Used for maps and measurements Oblique Photo Taken with the camera axis tilted away from vertical. Covers more area but with distortions Low Oblique: Horizon not visible High Oblique: Horizon visible 2️⃣ Based on Number of Photos Taken Type Description Single Photo One image taken of an area Stereoscopic Pair Two overlapping photos for 3D viewing and depth analysis Strip or Mosaic Series of overlapping photos covering a long area, useful in mapping large regions 3️⃣ Based on Spectral Sensitivity Type Description Application Panchromatic Captures images in black and white General mapping Infrared (IR) Sensitive to infrared radiation Veget...

Photogrammetry – Geometry of a Vertical Photograph

Photogrammetry is the science of making measurements from photographs, especially for mapping and surveying. When the camera axis is perpendicular (vertical) to the ground, the photo is called a vertical photograph , and its geometry is central to accurate mapping.  Elements of Vertical Photo Geometry In a vertical aerial photograph , the geometry is governed by the central projection principle. Here's how it works: 1. Principal Point (P) The point on the photo where the optical axis of the camera intersects the photo plane. It's the geometric center of the photo. 2. Nadir Point (N) The point on the ground directly below the camera at the time of exposure. Ideally, in a perfect vertical photo, the nadir and principal point coincide. 3. Photo Center (C) Usually coincides with the principal point in a vertical photo. 4. Ground Coordinates (X, Y, Z) Real-world (map) coordinates of objects photographed. 5. Flying Height (H) He...

Raster Data Structure

Raster Data Raster data is like a digital photo made up of small squares called cells or pixels . Each cell shows something about that spot — like how high it is (elevation), how hot it is (temperature), or what kind of land it is (forest, water, etc.). Think of it like a graph paper where each box is colored to show what's there. Key Points What's in the cell? Each cell stores information — for example, "water" or "forest." Where is the cell? The cell's location comes from its place in the grid (like row 3, column 5). We don't need to store its exact coordinates. How Do We Decide a Cell's Value? Sometimes, one cell covers more than one thing (like part forest and part water). To choose one value , we can: Center Point: Use whatever feature is in the middle. Most Area: Use the feature that takes up the most space in the cell. Most Important: Use the most important feature (like a road or well), even if it...

Photogrammetry

Photogrammetry is the science of taking measurements from photographs —especially to create maps, models, or 3D images of objects, land, or buildings. Imagine you take two pictures of a mountain from slightly different angles. Photogrammetry uses those photos to figure out the shape, size, and position of the mountain—just like our eyes do when we see in 3D! Concepts and Terminologies 1. Photograph A picture captured by a camera , either from the ground (terrestrial) or from above (aerial or drone). 2. Stereo Pair Two overlapping photos taken from different angles. When seen together, they help create a 3D effect —just like how two human eyes work. 3. Overlap To get a 3D model, photos must overlap each other: Forward overlap : Between two photos in a flight line (usually 60–70%) Side overlap : Between adjacent flight lines (usually 30–40%) 4. Scale The ratio of the photo size to real-world size. Example: A 1:10,000 scale photo means 1 cm on the photo...

Logical Data Model in GIS

In GIS, a logical data model defines how data is structured and interrelated—independent of how it is physically stored or implemented. It serves as a blueprint for designing databases, focusing on the organization of entities, their attributes, and relationships, without tying them to a specific database technology. Key Features Abstraction : The logical model operates at an abstract level, emphasizing the conceptual structure of data rather than the technical details of storage or implementation. Entity-Attribute Relationships : It identifies key entities (objects or concepts) and their attributes (properties), as well as the logical relationships between them. Business Rules : Business logic is embedded in the model to enforce rules, constraints, and conditions that ensure data consistency and accuracy. Technology Independence : The logical model is platform-agnostic—it is not tied to any specific database system or storage format. Visual Representat...