Skip to main content

Mapping Process


The mapping process involves several systematic steps to transform real-world spatial information into a readable, accurate, and useful representation. Below is a structured explanation of each step in the mapping process, with key concepts, terminologies, and examples.


1. Defining the Purpose of the Map

Before creating a map, it is essential to determine its purpose and audience. Different maps serve different objectives, such as navigation, analysis, or communication.

Types of Maps Based on Purpose:

  • Thematic Maps: Focus on specific subjects (e.g., climate maps, population density maps).
  • Topographic Maps: Show natural and human-made features (e.g., contour maps, landform maps).
  • Tourist Maps: Highlight attractions, roads, and landmarks for travelers.
  • Cadastral Maps: Used in land ownership and property boundaries.
  • Navigational Maps: Used in GPS systems for wayfinding.

Example: A disaster risk map for floods will highlight flood-prone areas, emergency shelters, and evacuation routes.


2. Determining the Scale

Scale defines the relationship between distances on a map and real-world distances. It affects the level of detail that can be shown.

Types of Scale Representation:

  • Verbal Scale: Expressed in words (e.g., "1 cm represents 1 km").
  • Graphic Scale (Scale Bar): A visual bar that helps measure distances directly on the map.
  • Fractional/Ratio Scale: Expressed as a ratio (e.g., 1:50,000, meaning 1 unit on the map equals 50,000 units on the ground).

Scale Categories:

  • Large-scale maps (e.g., 1:10,000) – Show more detail, used for city maps.
  • Small-scale maps (e.g., 1:1,000,000) – Cover large areas with less detail, used for world maps.

Example: A city zoning map uses a large scale (1:5,000) to show detailed streets and land use, while a world political map uses a small scale (1:10,000,000) to show only country borders.


3. Selecting the Spatial Entities (Features to Include)

Maps do not include everything; only relevant features are selected based on the map's purpose.

Types of Spatial Entities:

  • Points: Used for features with no area (e.g., cities, landmarks, schools).
  • Lines: Represent linear features (e.g., roads, rivers, pipelines).
  • Polygons: Show areas (e.g., lakes, forests, administrative boundaries).

Example: A road map includes roads (lines), cities (points), and national parks (polygons), but excludes unnecessary details like individual houses.


4. Choosing Methods of Representation (Symbols and Colors)

Maps use different visual elements to represent spatial features clearly and effectively.

Common Map Representation Methods:

  • Symbols: Used to represent objects (e.g., an airplane symbol for an airport).
  • Colors: Differentiate features (e.g., blue for water, green for forests, brown for elevation).
  • Shading & Patterns: Used to show density or intensity (e.g., population density maps).
  • Labels & Annotations: Provide names and descriptions.

Example: A land use map might use yellow for urban areas, green for forests, and blue for water bodies.


5. Generalization (Simplifying the Map)

Generalization involves removing unnecessary details while keeping the most important information.

Generalization Techniques:

  • Selection: Choosing essential features to include.
  • Simplification: Reducing complexity (e.g., simplifying river curves).
  • Aggregation: Grouping similar features (e.g., showing small islands as one).
  • Exaggeration: Enlarging important small features (e.g., making roads wider for visibility).
  • Displacement: Moving features slightly to avoid overlap.

Example: On a world map, small towns may not be shown, and minor rivers might be omitted to avoid clutter.


6. Applying a Map Projection

Since the Earth is a 3D sphere, it must be transformed onto a 2D plane using map projections. Different projections are used depending on the purpose of the map.

Common Map Projections:

  • Mercator Projection: Preserves shape but distorts area (used for navigation).
  • Robinson Projection: Balances distortions for a realistic world map.
  • Lambert Conformal Conic Projection: Used for regional maps where shape accuracy is important.
  • UTM (Universal Transverse Mercator): Used in detailed topographic maps and GIS.

Example: A flight route map uses Mercator projection because it preserves direction, while a climate zone map uses Robinson projection to give a realistic representation.


7. Applying Spatial Reference System (Coordinate System)

Every map needs a spatial reference system to position features correctly. This involves choosing the right coordinate system.

Types of Coordinate Systems:

  • Geographic Coordinate System (GCS): Uses latitude and longitude (e.g., WGS84).
  • Projected Coordinate System (PCS): Uses Cartesian (X, Y) coordinates (e.g., UTM Zones).
  • Local Coordinate Systems: Customized for a region (e.g., Indian Grid System).

Why Spatial Reference Matters?

  • Ensures maps align correctly with other datasets.
  • Allows for accurate measurements of distance and area.

Example:

  • Google Maps uses the Web Mercator projection (EPSG:3857).
  • GIS applications in India commonly use WGS 84 UTM Zone 44N for better accuracy.

Comments

Popular posts from this blog

Photogrammetry – Types of Photographs

In photogrammetry, aerial photographs are categorized based on camera orientation , coverage , and spectral sensitivity . Below is a breakdown of the major types: 1️⃣ Based on Camera Axis Orientation Type Description Key Feature Vertical Photo Taken with the camera axis pointing directly downward (within 3° of vertical). Used for maps and measurements Oblique Photo Taken with the camera axis tilted away from vertical. Covers more area but with distortions Low Oblique: Horizon not visible High Oblique: Horizon visible 2️⃣ Based on Number of Photos Taken Type Description Single Photo One image taken of an area Stereoscopic Pair Two overlapping photos for 3D viewing and depth analysis Strip or Mosaic Series of overlapping photos covering a long area, useful in mapping large regions 3️⃣ Based on Spectral Sensitivity Type Description Application Panchromatic Captures images in black and white General mapping Infrared (IR) Sensitive to infrared radiation Veget...

Photogrammetry – Geometry of a Vertical Photograph

Photogrammetry is the science of making measurements from photographs, especially for mapping and surveying. When the camera axis is perpendicular (vertical) to the ground, the photo is called a vertical photograph , and its geometry is central to accurate mapping.  Elements of Vertical Photo Geometry In a vertical aerial photograph , the geometry is governed by the central projection principle. Here's how it works: 1. Principal Point (P) The point on the photo where the optical axis of the camera intersects the photo plane. It's the geometric center of the photo. 2. Nadir Point (N) The point on the ground directly below the camera at the time of exposure. Ideally, in a perfect vertical photo, the nadir and principal point coincide. 3. Photo Center (C) Usually coincides with the principal point in a vertical photo. 4. Ground Coordinates (X, Y, Z) Real-world (map) coordinates of objects photographed. 5. Flying Height (H) He...

Raster Data Structure

Raster Data Raster data is like a digital photo made up of small squares called cells or pixels . Each cell shows something about that spot — like how high it is (elevation), how hot it is (temperature), or what kind of land it is (forest, water, etc.). Think of it like a graph paper where each box is colored to show what's there. Key Points What's in the cell? Each cell stores information — for example, "water" or "forest." Where is the cell? The cell's location comes from its place in the grid (like row 3, column 5). We don't need to store its exact coordinates. How Do We Decide a Cell's Value? Sometimes, one cell covers more than one thing (like part forest and part water). To choose one value , we can: Center Point: Use whatever feature is in the middle. Most Area: Use the feature that takes up the most space in the cell. Most Important: Use the most important feature (like a road or well), even if it...

Photogrammetry

Photogrammetry is the science of taking measurements from photographs —especially to create maps, models, or 3D images of objects, land, or buildings. Imagine you take two pictures of a mountain from slightly different angles. Photogrammetry uses those photos to figure out the shape, size, and position of the mountain—just like our eyes do when we see in 3D! Concepts and Terminologies 1. Photograph A picture captured by a camera , either from the ground (terrestrial) or from above (aerial or drone). 2. Stereo Pair Two overlapping photos taken from different angles. When seen together, they help create a 3D effect —just like how two human eyes work. 3. Overlap To get a 3D model, photos must overlap each other: Forward overlap : Between two photos in a flight line (usually 60–70%) Side overlap : Between adjacent flight lines (usually 30–40%) 4. Scale The ratio of the photo size to real-world size. Example: A 1:10,000 scale photo means 1 cm on the photo...

Solar Radiation and Remote Sensing

Satellite Remote Sensing Satellite remote sensing is the science of acquiring information about Earth's surface and atmosphere without physical contact , using sensors mounted on satellites. These sensors detect and record electromagnetic radiation (EMR) that is either emitted or reflected from the Earth's surface. Solar Radiation & Earth's Energy Balance Solar Radiation is the primary source of energy for Earth's climate system. It originates from the Sun and travels through space as electromagnetic waves . Incoming Shortwave Solar Radiation (insolation) consists mostly of ultraviolet, visible, and near-infrared wavelengths . When it reaches Earth, it can be: Absorbed by the atmosphere, clouds, or surface Reflected back to space Scattered by atmospheric particles Outgoing Longwave Radiation is the infrared energy emitted by Earth back into space after absorbing solar energy. This process helps maintain Earth's thermal bala...