Skip to main content

Graduated Symbol with Quantile Classification

Graduated Symbol with Quantile Classification

Geographical data visualization plays a crucial role in GIS-based research, helping to reveal spatial patterns and distributions. One such method is the Graduated Symbol Map with Quantile Classification, which combines statistical categorization with symbolic representation for effective data interpretation.


1. The Concept of Graduated Symbols

Graduated symbols in GIS are proportional representations of numerical data assigned to geographical features. The size of each symbol changes according to the magnitude of the associated data attribute. This technique is commonly used for:

  • Visualizing variation in spatial datasets (e.g., crime rates, GDP, population density).
  • Highlighting relative differences rather than absolute values.
  • Avoiding misinterpretation often caused by color-based representations in choropleth maps.

For instance, in a crime rate map, cities with higher crime rates would be represented with larger circles, while those with lower crime rates would have smaller circles.


2. Quantile Data Classification: Statistical Basis

Quantile classification is a statistical approach that divides data into equal-sized groups. If the data is divided into four groups (quartiles), each class contains 25% of the total observations.

Mathematical Explanation

Given a dataset D with n observations, a quantile classification finds the k-th percentile (Qk) by:

Qk=X(k×n)Q_k = X_{(k \times n)}

where:

  • kk is the quantile (e.g., 0.25 for the first quartile, 0.50 for the median, etc.).
  • X(k×n)X_{(k \times n)} is the value at the respective position when data is sorted.

Example Dataset

CityCrime Rate (per 100,000 people)
A125
B200
C350
D450
E500
F750
G800
H950

Sorting the data:

125,200,350,450,500,750,800,950125, 200, 350, 450, 500, 750, 800, 950

For quartile-based classification (4 groups):

  • Q1 (25%) → 287.5 (between 200 and 350)
  • Q2 (50%) → 475 (between 450 and 500)
  • Q3 (75%) → 775 (between 750 and 800)

Thus, the class intervals would be:

  1. 125 - 287.5 (Smallest symbols)
  2. 287.6 - 475
  3. 476 - 775
  4. 776 - 950 (Largest symbols)

3. Analytical Benefits and Drawbacks

Benefits

  1. Uniform Distribution of Data in Classes

    • Ensures each class contains an equal number of data points.
    • Helps in avoiding class imbalance that can occur in natural breaks or standard deviation-based classification.
  2. Better Visualization for Skewed Data

    • If the data distribution is highly skewed (i.e., clustered towards one end), quantile classification ensures all data ranges are equally represented.
    • Helps in highlighting contrasts even in small differences.
  3. Easier Interpretation

    • Since each class contains an equal number of data points, comparison across different regions is straightforward.

Drawbacks

  1. Artificial Grouping of Data

    • In cases where the data is not evenly distributed, boundaries might not represent real-world differences.
    • For example, two cities with crime rates of 799 and 801 might be placed in separate categories, creating an artificial break.
  2. Size Misrepresentation in Graduated Symbols

    • If values in a category vary significantly, symbol sizes might exaggerate or understate real differences.
    • For instance, a city with a crime rate of 500 would receive the same symbol size as another with 750, despite a notable difference.

4. Applied Example in GIS

If applying this technique in ArcGIS, QGIS, or Google Earth Engine, the workflow would be:

  1. Data Collection: Import the geospatial dataset (e.g., crime rates, population density).
  2. Sorting and Classification: Use quantile classification to divide the dataset into equal-size groups.
  3. Symbol Scaling: Assign graduated symbols (e.g., circle size increases with crime rate).
  4. Map Interpretation: Analyze spatial distribution and identify hotspots or patterns.


Implementing Graduated Symbols with Quantile Classification in ArcGIS

ArcGIS allows you to apply graduated symbols and classify data using quantiles for effective spatial analysis. Below is a step-by-step guide to implementing this technique.


Step 1: Load the Data

  1. Open ArcGIS Pro or ArcMap.
  2. Click Add Data → Select the shapefile or geodatabase feature class that contains your spatial data (e.g., crime rates, population).
  3. Ensure your dataset includes a numerical field for classification (e.g., "Crime Rate per 100,000 people").

Step 2: Open the Symbology Panel

  1. Right-click on the layer in the Table of Contents.
  2. Select Symbology.
  3. Choose Graduated Symbols.

Step 3: Configure the Classification

  1. In the Symbology tab:
    • Choose the Value Field (e.g., "Crime Rate").
    • Set Normalization (optional, e.g., dividing crime counts by population size).
  2. Under Classification, select Quantile (Equal Count).
  3. Set the number of classes (e.g., 4 for quartiles, 5 for quintiles).
  4. Click Classify to generate class breaks.

Step 4: Customize Symbol Sizes

  1. Adjust the minimum and maximum symbol sizes for clear differentiation.
  2. Use proportional scaling to ensure readability.
  3. Optionally, choose circle, square, or other symbols to best represent the data.

Step 5: Finalize and Export

  1. Click Apply to preview the changes.
  2. Click OK to finalize the symbology.
  3. To export the map:
    • Go to Layout View.
    • Add a Legend, Title, Scale Bar, and North Arrow.
    • Export as PDF, PNG, or GeoTIFF.

Example Use Case: Crime Rate Mapping

  • Dataset: Crime rates in different districts.
  • Classification: Quantile (4 classes)
    • 0–250 crimes: Smallest symbol
    • 251–500 crimes: Medium symbol
    • 501–750 crimes: Large symbol
    • 751+ crimes: Largest symbol
  • Output: A clear spatial pattern showing high-crime areas.






Quantile Classification






The Graduated Symbol with Quantile Classification is a powerful GIS visualization tool that balances spatial representation with statistical fairness. It ensures that all areas receive equal emphasis, which is useful in urban planning, socio-economic studies, and environmental monitoring. However, careful interpretation is required to avoid artificial class separations and misrepresentation due to symbol scaling.

Comments

Popular posts from this blog

Platforms in Remote Sensing

In remote sensing, a platform is the physical structure or vehicle that carries a sensor (camera, scanner, radar, etc.) to observe and collect information about the Earth's surface. Platforms are classified mainly by their altitude and mobility : Ground-Based Platforms Definition : Sensors mounted on the Earth's surface or very close to it. Examples : Tripods, towers, ground vehicles, handheld instruments. Applications : Calibration and validation of satellite data Detailed local studies (e.g., soil properties, vegetation health, air quality) Strength : High spatial detail but limited coverage. Airborne Platforms Definition : Sensors carried by aircraft, balloons, or drones (UAVs). Altitude : A few hundred meters to ~20 km. Examples : Airplanes with multispectral scanners UAVs with high-resolution cameras or LiDAR High-altitude balloons (stratospheric platforms) Applications : Local-to-regional mapping ...

Types of Remote Sensing

Remote Sensing means collecting information about the Earth's surface without touching it , usually using satellites, aircraft, or drones . There are different types of remote sensing based on the energy source and the wavelength region used. ๐Ÿ›ฐ️ 1. Active Remote Sensing ๐Ÿ“˜ Concept: In active remote sensing , the sensor sends out its own energy (like a signal or pulse) to the Earth's surface. The sensor then records the reflected or backscattered energy that comes back from the surface. ⚙️ Key Terminology: Transmitter: sends energy (like a radar pulse or laser beam). Receiver: detects the energy that bounces back. Backscatter: energy that is reflected back to the sensor. ๐Ÿ“Š Examples of Active Sensors: RADAR (Radio Detection and Ranging): Uses microwave signals to detect surface roughness, soil moisture, or ocean waves. LiDAR (Light Detection and Ranging): Uses laser light (near-infrared) to measure elevation, vegetation...

Resolution of Sensors in Remote Sensing

Spatial Resolution ๐Ÿ—บ️ Definition : The smallest size of an object on the ground that a sensor can detect. Measured as : The size of a pixel on the ground (in meters). Example : Landsat → 30 m (each pixel = 30 × 30 m on Earth). WorldView-3 → 0.31 m (very detailed, you can see cars). Fact : Higher spatial resolution = finer details, but smaller coverage. Spectral Resolution ๐ŸŒˆ Definition : The ability of a sensor to capture information in different parts (bands) of the electromagnetic spectrum . Measured as : The number and width of spectral bands. Types : Panchromatic (1 broad band, e.g., black & white image). Multispectral (several broad bands, e.g., Landsat with 7–13 bands). Hyperspectral (hundreds of very narrow bands, e.g., AVIRIS). Fact : Higher spectral resolution = better identification of materials (e.g., minerals, vegetation types). Radiometric Resolution ๐Ÿ“Š Definition : The ability of a sensor to ...

Optical Sensors in Remote Sensing

1. What Are Optical Sensors? Optical sensors are remote sensing instruments that detect solar radiation reflected or emitted from the Earth's surface in specific portions of the electromagnetic spectrum (EMS) . They mainly work in: Visible region (0.4–0.7 ยตm) Near-Infrared – NIR (0.7–1.3 ยตm) Shortwave Infrared – SWIR (1.3–3.0 ยตm) Thermal Infrared – TIR (8–14 ยตm) — emitted energy, not reflected Optical sensors capture spectral signatures of surface features. Each object reflects/absorbs energy differently, creating a unique spectral response pattern . a) Electromagnetic Spectrum (EMS) The continuous range of wavelengths. Optical sensing uses solar reflective bands and sometimes thermal bands . b) Spectral Signature The unique pattern of reflectance or absorbance of an object across wavelengths. Example: Vegetation reflects strongly in NIR Water absorbs strongly in NIR and SWIR (appears dark) c) Radiance and Reflectance Radi...

geostationary and sun-synchronous

Orbital characteristics of Remote sensing satellite geostationary and sun-synchronous  Orbits in Remote Sensing Orbit = the path a satellite follows around the Earth. The orbit determines what part of Earth the satellite can see , how often it revisits , and what applications it is good for . Remote sensing satellites mainly use two standard orbits : Geostationary Orbit (GEO) Sun-Synchronous Orbit (SSO)  Geostationary Satellites (GEO) Characteristics Altitude : ~35,786 km above the equator. Period : 24 hours → same as Earth's rotation. Orbit type : Circular, directly above the equator . Appears "stationary" over one fixed point on Earth. Concepts & Terminologies Geosynchronous = orbit period matches Earth's rotation (24h). Geostationary = special type of geosynchronous orbit directly above equator → looks fixed. Continuous coverage : Can monitor the same area all the time. Applications Weather...