Skip to main content

Graduated Symbol with Quantile Classification

Graduated Symbol with Quantile Classification

Geographical data visualization plays a crucial role in GIS-based research, helping to reveal spatial patterns and distributions. One such method is the Graduated Symbol Map with Quantile Classification, which combines statistical categorization with symbolic representation for effective data interpretation.


1. The Concept of Graduated Symbols

Graduated symbols in GIS are proportional representations of numerical data assigned to geographical features. The size of each symbol changes according to the magnitude of the associated data attribute. This technique is commonly used for:

  • Visualizing variation in spatial datasets (e.g., crime rates, GDP, population density).
  • Highlighting relative differences rather than absolute values.
  • Avoiding misinterpretation often caused by color-based representations in choropleth maps.

For instance, in a crime rate map, cities with higher crime rates would be represented with larger circles, while those with lower crime rates would have smaller circles.


2. Quantile Data Classification: Statistical Basis

Quantile classification is a statistical approach that divides data into equal-sized groups. If the data is divided into four groups (quartiles), each class contains 25% of the total observations.

Mathematical Explanation

Given a dataset D with n observations, a quantile classification finds the k-th percentile (Qk) by:

Qk=X(k×n)Q_k = X_{(k \times n)}

where:

  • kk is the quantile (e.g., 0.25 for the first quartile, 0.50 for the median, etc.).
  • X(k×n)X_{(k \times n)} is the value at the respective position when data is sorted.

Example Dataset

CityCrime Rate (per 100,000 people)
A125
B200
C350
D450
E500
F750
G800
H950

Sorting the data:

125,200,350,450,500,750,800,950125, 200, 350, 450, 500, 750, 800, 950

For quartile-based classification (4 groups):

  • Q1 (25%) → 287.5 (between 200 and 350)
  • Q2 (50%) → 475 (between 450 and 500)
  • Q3 (75%) → 775 (between 750 and 800)

Thus, the class intervals would be:

  1. 125 - 287.5 (Smallest symbols)
  2. 287.6 - 475
  3. 476 - 775
  4. 776 - 950 (Largest symbols)

3. Analytical Benefits and Drawbacks

Benefits

  1. Uniform Distribution of Data in Classes

    • Ensures each class contains an equal number of data points.
    • Helps in avoiding class imbalance that can occur in natural breaks or standard deviation-based classification.
  2. Better Visualization for Skewed Data

    • If the data distribution is highly skewed (i.e., clustered towards one end), quantile classification ensures all data ranges are equally represented.
    • Helps in highlighting contrasts even in small differences.
  3. Easier Interpretation

    • Since each class contains an equal number of data points, comparison across different regions is straightforward.

Drawbacks

  1. Artificial Grouping of Data

    • In cases where the data is not evenly distributed, boundaries might not represent real-world differences.
    • For example, two cities with crime rates of 799 and 801 might be placed in separate categories, creating an artificial break.
  2. Size Misrepresentation in Graduated Symbols

    • If values in a category vary significantly, symbol sizes might exaggerate or understate real differences.
    • For instance, a city with a crime rate of 500 would receive the same symbol size as another with 750, despite a notable difference.

4. Applied Example in GIS

If applying this technique in ArcGIS, QGIS, or Google Earth Engine, the workflow would be:

  1. Data Collection: Import the geospatial dataset (e.g., crime rates, population density).
  2. Sorting and Classification: Use quantile classification to divide the dataset into equal-size groups.
  3. Symbol Scaling: Assign graduated symbols (e.g., circle size increases with crime rate).
  4. Map Interpretation: Analyze spatial distribution and identify hotspots or patterns.


Implementing Graduated Symbols with Quantile Classification in ArcGIS

ArcGIS allows you to apply graduated symbols and classify data using quantiles for effective spatial analysis. Below is a step-by-step guide to implementing this technique.


Step 1: Load the Data

  1. Open ArcGIS Pro or ArcMap.
  2. Click Add Data → Select the shapefile or geodatabase feature class that contains your spatial data (e.g., crime rates, population).
  3. Ensure your dataset includes a numerical field for classification (e.g., "Crime Rate per 100,000 people").

Step 2: Open the Symbology Panel

  1. Right-click on the layer in the Table of Contents.
  2. Select Symbology.
  3. Choose Graduated Symbols.

Step 3: Configure the Classification

  1. In the Symbology tab:
    • Choose the Value Field (e.g., "Crime Rate").
    • Set Normalization (optional, e.g., dividing crime counts by population size).
  2. Under Classification, select Quantile (Equal Count).
  3. Set the number of classes (e.g., 4 for quartiles, 5 for quintiles).
  4. Click Classify to generate class breaks.

Step 4: Customize Symbol Sizes

  1. Adjust the minimum and maximum symbol sizes for clear differentiation.
  2. Use proportional scaling to ensure readability.
  3. Optionally, choose circle, square, or other symbols to best represent the data.

Step 5: Finalize and Export

  1. Click Apply to preview the changes.
  2. Click OK to finalize the symbology.
  3. To export the map:
    • Go to Layout View.
    • Add a Legend, Title, Scale Bar, and North Arrow.
    • Export as PDF, PNG, or GeoTIFF.

Example Use Case: Crime Rate Mapping

  • Dataset: Crime rates in different districts.
  • Classification: Quantile (4 classes)
    • 0–250 crimes: Smallest symbol
    • 251–500 crimes: Medium symbol
    • 501–750 crimes: Large symbol
    • 751+ crimes: Largest symbol
  • Output: A clear spatial pattern showing high-crime areas.






Quantile Classification






The Graduated Symbol with Quantile Classification is a powerful GIS visualization tool that balances spatial representation with statistical fairness. It ensures that all areas receive equal emphasis, which is useful in urban planning, socio-economic studies, and environmental monitoring. However, careful interpretation is required to avoid artificial class separations and misrepresentation due to symbol scaling.

Comments

Popular posts from this blog

History of GIS

1. 1832 - Early Spatial Analysis in Epidemiology:    - Charles Picquet creates a map in Paris detailing cholera deaths per 1,000 inhabitants.    - Utilizes halftone color gradients for visual representation. 2. 1854 - John Snow's Cholera Outbreak Analysis:    - Epidemiologist John Snow identifies cholera outbreak source in London using spatial analysis.    - Maps casualties' residences and nearby water sources to pinpoint the outbreak's origin. 3. Early 20th Century - Photozincography and Layered Mapping:    - Photozincography development allows maps to be split into layers for vegetation, water, etc.    - Introduction of layers, later a key feature in GIS, for separate printing plates. 4. Mid-20th Century - Computer Facilitation of Cartography:    - Waldo Tobler's 1959 publication details using computers for cartography.    - Computer hardware development, driven by nuclear weapon research, leads to broader mapping applications by early 1960s. 5. 1960 - Canada Geograph...

Supervised Classification

Image Classification in Remote Sensing Image classification in remote sensing involves categorizing pixels in an image into thematic classes to produce a map. This process is essential for land use and land cover mapping, environmental studies, and resource management. The two primary methods for classification are Supervised and Unsupervised Classification . Here's a breakdown of these methods and the key stages of image classification. 1. Types of Classification Supervised Classification In supervised classification, the analyst manually defines classes of interest (known as information classes ), such as "water," "urban," or "vegetation," and identifies training areas —sections of the image that are representative of these classes. Using these training areas, the algorithm learns the spectral characteristics of each class and applies them to classify the entire image. When to Use Supervised Classification:   - You have prior knowledge about the c...

History of GIS

The history of Geographic Information Systems (GIS) is rooted in early efforts to understand spatial relationships and patterns, long before the advent of digital computers. While modern GIS emerged in the mid-20th century with advances in computing, its conceptual foundations lie in cartography, spatial analysis, and thematic mapping. Early Roots of Spatial Analysis (Pre-1960s) One of the earliest documented applications of spatial analysis dates back to  1832 , when  Charles Picquet , a French geographer and cartographer, produced a cholera mortality map of Paris. In his report  Rapport sur la marche et les effets du cholĂ©ra dans Paris et le dĂ©partement de la Seine , Picquet used graduated color shading to represent cholera deaths per 1,000 inhabitants across 48 districts. This work is widely regarded as an early example of choropleth mapping and thematic cartography applied to epidemiology. A landmark moment in the history of spatial analysis occurred in  1854 , when  John Snow  inv...

Representation of Spatial and Temporal Relationships

In GIS, spatial and temporal relationships allow the integration of location (the "where") and time (the "when") to analyze phenomena across space and time. This combination is fundamental to studying dynamic processes such as urban growth, land-use changes, or natural disasters. Key Concepts and Terminologies Geographic Coordinates : Define the position of features on Earth using latitude, longitude, or other coordinate systems. Example: A building's location can be represented as (11.6994° N, 76.0773° E). Timestamp : Represents the temporal aspect of data, such as the date or time a phenomenon was observed. Example: A landslide occurrence recorded on 30/07/2024 . Spatial and Temporal Relationships : Describes how features relate in space and time. These relationships can be: Spatial : Topological (e.g., "intersects"), directional (e.g., "north of"), or proximity-based (e.g., "near"). Temporal : Sequential (e....

Pre During and Post Disaster

Disaster management is a structured approach aimed at reducing risks, responding effectively, and ensuring a swift recovery from disasters. It consists of three main phases: Pre-Disaster (Mitigation & Preparedness), During Disaster (Response), and Post-Disaster (Recovery). These phases involve various strategies, policies, and actions to protect lives, property, and the environment. Below is a breakdown of each phase with key concepts, terminologies, and examples. 1. Pre-Disaster Phase (Mitigation and Preparedness) Mitigation: This phase focuses on reducing the severity of a disaster by minimizing risks and vulnerabilities. It involves structural and non-structural measures. Hazard Identification: Recognizing potential natural and human-made hazards (e.g., earthquakes, floods, industrial accidents). Risk Assessment: Evaluating the probability and consequences of disasters using GIS, remote sensing, and historical data. Vulnerability Analysis: Identifying areas and p...