Skip to main content

Graduated Symbol with Quantile Classification

Graduated Symbol with Quantile Classification

Geographical data visualization plays a crucial role in GIS-based research, helping to reveal spatial patterns and distributions. One such method is the Graduated Symbol Map with Quantile Classification, which combines statistical categorization with symbolic representation for effective data interpretation.


1. The Concept of Graduated Symbols

Graduated symbols in GIS are proportional representations of numerical data assigned to geographical features. The size of each symbol changes according to the magnitude of the associated data attribute. This technique is commonly used for:

  • Visualizing variation in spatial datasets (e.g., crime rates, GDP, population density).
  • Highlighting relative differences rather than absolute values.
  • Avoiding misinterpretation often caused by color-based representations in choropleth maps.

For instance, in a crime rate map, cities with higher crime rates would be represented with larger circles, while those with lower crime rates would have smaller circles.


2. Quantile Data Classification: Statistical Basis

Quantile classification is a statistical approach that divides data into equal-sized groups. If the data is divided into four groups (quartiles), each class contains 25% of the total observations.

Mathematical Explanation

Given a dataset D with n observations, a quantile classification finds the k-th percentile (Qk) by:

Qk=X(k×n)Q_k = X_{(k \times n)}

where:

  • kk is the quantile (e.g., 0.25 for the first quartile, 0.50 for the median, etc.).
  • X(k×n)X_{(k \times n)} is the value at the respective position when data is sorted.

Example Dataset

CityCrime Rate (per 100,000 people)
A125
B200
C350
D450
E500
F750
G800
H950

Sorting the data:

125,200,350,450,500,750,800,950125, 200, 350, 450, 500, 750, 800, 950

For quartile-based classification (4 groups):

  • Q1 (25%) → 287.5 (between 200 and 350)
  • Q2 (50%) → 475 (between 450 and 500)
  • Q3 (75%) → 775 (between 750 and 800)

Thus, the class intervals would be:

  1. 125 - 287.5 (Smallest symbols)
  2. 287.6 - 475
  3. 476 - 775
  4. 776 - 950 (Largest symbols)

3. Analytical Benefits and Drawbacks

Benefits

  1. Uniform Distribution of Data in Classes

    • Ensures each class contains an equal number of data points.
    • Helps in avoiding class imbalance that can occur in natural breaks or standard deviation-based classification.
  2. Better Visualization for Skewed Data

    • If the data distribution is highly skewed (i.e., clustered towards one end), quantile classification ensures all data ranges are equally represented.
    • Helps in highlighting contrasts even in small differences.
  3. Easier Interpretation

    • Since each class contains an equal number of data points, comparison across different regions is straightforward.

Drawbacks

  1. Artificial Grouping of Data

    • In cases where the data is not evenly distributed, boundaries might not represent real-world differences.
    • For example, two cities with crime rates of 799 and 801 might be placed in separate categories, creating an artificial break.
  2. Size Misrepresentation in Graduated Symbols

    • If values in a category vary significantly, symbol sizes might exaggerate or understate real differences.
    • For instance, a city with a crime rate of 500 would receive the same symbol size as another with 750, despite a notable difference.

4. Applied Example in GIS

If applying this technique in ArcGIS, QGIS, or Google Earth Engine, the workflow would be:

  1. Data Collection: Import the geospatial dataset (e.g., crime rates, population density).
  2. Sorting and Classification: Use quantile classification to divide the dataset into equal-size groups.
  3. Symbol Scaling: Assign graduated symbols (e.g., circle size increases with crime rate).
  4. Map Interpretation: Analyze spatial distribution and identify hotspots or patterns.


Implementing Graduated Symbols with Quantile Classification in ArcGIS

ArcGIS allows you to apply graduated symbols and classify data using quantiles for effective spatial analysis. Below is a step-by-step guide to implementing this technique.


Step 1: Load the Data

  1. Open ArcGIS Pro or ArcMap.
  2. Click Add Data → Select the shapefile or geodatabase feature class that contains your spatial data (e.g., crime rates, population).
  3. Ensure your dataset includes a numerical field for classification (e.g., "Crime Rate per 100,000 people").

Step 2: Open the Symbology Panel

  1. Right-click on the layer in the Table of Contents.
  2. Select Symbology.
  3. Choose Graduated Symbols.

Step 3: Configure the Classification

  1. In the Symbology tab:
    • Choose the Value Field (e.g., "Crime Rate").
    • Set Normalization (optional, e.g., dividing crime counts by population size).
  2. Under Classification, select Quantile (Equal Count).
  3. Set the number of classes (e.g., 4 for quartiles, 5 for quintiles).
  4. Click Classify to generate class breaks.

Step 4: Customize Symbol Sizes

  1. Adjust the minimum and maximum symbol sizes for clear differentiation.
  2. Use proportional scaling to ensure readability.
  3. Optionally, choose circle, square, or other symbols to best represent the data.

Step 5: Finalize and Export

  1. Click Apply to preview the changes.
  2. Click OK to finalize the symbology.
  3. To export the map:
    • Go to Layout View.
    • Add a Legend, Title, Scale Bar, and North Arrow.
    • Export as PDF, PNG, or GeoTIFF.

Example Use Case: Crime Rate Mapping

  • Dataset: Crime rates in different districts.
  • Classification: Quantile (4 classes)
    • 0–250 crimes: Smallest symbol
    • 251–500 crimes: Medium symbol
    • 501–750 crimes: Large symbol
    • 751+ crimes: Largest symbol
  • Output: A clear spatial pattern showing high-crime areas.






Quantile Classification






The Graduated Symbol with Quantile Classification is a powerful GIS visualization tool that balances spatial representation with statistical fairness. It ensures that all areas receive equal emphasis, which is useful in urban planning, socio-economic studies, and environmental monitoring. However, careful interpretation is required to avoid artificial class separations and misrepresentation due to symbol scaling.

Comments

Popular posts from this blog

Natural Disasters

A natural disaster is a catastrophic event caused by natural processes of the Earth that results in significant loss of life, property, and environmental resources. It occurs when a hazard (potentially damaging physical event) interacts with a vulnerable population and leads to disruption of normal life . Key terms: Hazard → A potential natural event (e.g., cyclone, earthquake). Disaster → When the hazard causes widespread damage due to vulnerability. Risk → Probability of harmful consequences from interaction of hazard and vulnerability. Vulnerability → Degree to which a community or system is exposed and unable to cope with the hazard. Resilience → Ability of a system or society to recover from the disaster impact. 👉 Example: An earthquake in an uninhabited desert is a hazard , but not a disaster unless people or infrastructure are affected. Types Natural disasters can be classified into geophysical, hydrological, meteorological, clim...

Types of Remote Sensing

Remote Sensing means collecting information about the Earth's surface without touching it , usually using satellites, aircraft, or drones . There are different types of remote sensing based on the energy source and the wavelength region used. 🛰️ 1. Active Remote Sensing 📘 Concept: In active remote sensing , the sensor sends out its own energy (like a signal or pulse) to the Earth's surface. The sensor then records the reflected or backscattered energy that comes back from the surface. ⚙️ Key Terminology: Transmitter: sends energy (like a radar pulse or laser beam). Receiver: detects the energy that bounces back. Backscatter: energy that is reflected back to the sensor. 📊 Examples of Active Sensors: RADAR (Radio Detection and Ranging): Uses microwave signals to detect surface roughness, soil moisture, or ocean waves. LiDAR (Light Detection and Ranging): Uses laser light (near-infrared) to measure elevation, vegetation...

geostationary and sun-synchronous

Orbital characteristics of Remote sensing satellite geostationary and sun-synchronous  Orbits in Remote Sensing Orbit = the path a satellite follows around the Earth. The orbit determines what part of Earth the satellite can see , how often it revisits , and what applications it is good for . Remote sensing satellites mainly use two standard orbits : Geostationary Orbit (GEO) Sun-Synchronous Orbit (SSO)  Geostationary Satellites (GEO) Characteristics Altitude : ~35,786 km above the equator. Period : 24 hours → same as Earth's rotation. Orbit type : Circular, directly above the equator . Appears "stationary" over one fixed point on Earth. Concepts & Terminologies Geosynchronous = orbit period matches Earth's rotation (24h). Geostationary = special type of geosynchronous orbit directly above equator → looks fixed. Continuous coverage : Can monitor the same area all the time. Applications Weather...

Linear Arrays Along-Track Scanners or Pushbroom Scanners

Multispectral Imaging Using Linear Arrays (Along-Track Scanners or Pushbroom Scanners) Multispectral Imaging: As previously defined, this involves capturing images using multiple sensors that are sensitive to different wavelengths of electromagnetic radiation. Linear Array of Detectors (A): This refers to a row of discrete detectors arranged in a straight line. Each detector is responsible for measuring the radiation within a specific wavelength band. Focal Plane (B): This is the plane where the image is formed by the lens system. It is the location where the detectors are placed to capture the focused image. Formed by Lens Systems (C): The lens system is responsible for collecting and focusing the incoming radiation onto the focal plane. It acts like a camera lens, creating a sharp image of the scene. Ground Resolution Cell (D): As previously defined, this is the smallest area on the ground that can be resolved by a remote sensing sensor. In the case of linear array scanne...

India remote sensing

1. Foundational Phase (Early 1970s – Early 1980s) Objective: To explore the potential of space-based observation for national development. 1972: The Space Applications Programme (SAP) was initiated by the Indian Space Research Organisation (ISRO), focusing on applying space technology for societal benefits. 1975: The Department of Space (DoS) was established, providing an institutional base for space applications, including remote sensing. 1977: India began aerial and balloon-borne experiments to study Earth resources and assess how remote sensing data could aid in agriculture, forestry, and hydrology. 1978 (June 7): Bhaskara-I launched by the Soviet Union — India's first experimental Earth Observation satellite . Payloads: TV cameras (for land and ocean surface observation) and a Microwave Radiometer. Significance: Proved that satellite-based Earth observation was feasible for India's needs. 1981 (November 20): Bhaskara-II launche...