Skip to main content

Graduated Symbol with Quantile Classification

Graduated Symbol with Quantile Classification

Geographical data visualization plays a crucial role in GIS-based research, helping to reveal spatial patterns and distributions. One such method is the Graduated Symbol Map with Quantile Classification, which combines statistical categorization with symbolic representation for effective data interpretation.


1. The Concept of Graduated Symbols

Graduated symbols in GIS are proportional representations of numerical data assigned to geographical features. The size of each symbol changes according to the magnitude of the associated data attribute. This technique is commonly used for:

  • Visualizing variation in spatial datasets (e.g., crime rates, GDP, population density).
  • Highlighting relative differences rather than absolute values.
  • Avoiding misinterpretation often caused by color-based representations in choropleth maps.

For instance, in a crime rate map, cities with higher crime rates would be represented with larger circles, while those with lower crime rates would have smaller circles.


2. Quantile Data Classification: Statistical Basis

Quantile classification is a statistical approach that divides data into equal-sized groups. If the data is divided into four groups (quartiles), each class contains 25% of the total observations.

Mathematical Explanation

Given a dataset D with n observations, a quantile classification finds the k-th percentile (Qk) by:

Qk=X(k×n)Q_k = X_{(k \times n)}

where:

  • kk is the quantile (e.g., 0.25 for the first quartile, 0.50 for the median, etc.).
  • X(k×n)X_{(k \times n)} is the value at the respective position when data is sorted.

Example Dataset

CityCrime Rate (per 100,000 people)
A125
B200
C350
D450
E500
F750
G800
H950

Sorting the data:

125,200,350,450,500,750,800,950125, 200, 350, 450, 500, 750, 800, 950

For quartile-based classification (4 groups):

  • Q1 (25%) → 287.5 (between 200 and 350)
  • Q2 (50%) → 475 (between 450 and 500)
  • Q3 (75%) → 775 (between 750 and 800)

Thus, the class intervals would be:

  1. 125 - 287.5 (Smallest symbols)
  2. 287.6 - 475
  3. 476 - 775
  4. 776 - 950 (Largest symbols)

3. Analytical Benefits and Drawbacks

Benefits

  1. Uniform Distribution of Data in Classes

    • Ensures each class contains an equal number of data points.
    • Helps in avoiding class imbalance that can occur in natural breaks or standard deviation-based classification.
  2. Better Visualization for Skewed Data

    • If the data distribution is highly skewed (i.e., clustered towards one end), quantile classification ensures all data ranges are equally represented.
    • Helps in highlighting contrasts even in small differences.
  3. Easier Interpretation

    • Since each class contains an equal number of data points, comparison across different regions is straightforward.

Drawbacks

  1. Artificial Grouping of Data

    • In cases where the data is not evenly distributed, boundaries might not represent real-world differences.
    • For example, two cities with crime rates of 799 and 801 might be placed in separate categories, creating an artificial break.
  2. Size Misrepresentation in Graduated Symbols

    • If values in a category vary significantly, symbol sizes might exaggerate or understate real differences.
    • For instance, a city with a crime rate of 500 would receive the same symbol size as another with 750, despite a notable difference.

4. Applied Example in GIS

If applying this technique in ArcGIS, QGIS, or Google Earth Engine, the workflow would be:

  1. Data Collection: Import the geospatial dataset (e.g., crime rates, population density).
  2. Sorting and Classification: Use quantile classification to divide the dataset into equal-size groups.
  3. Symbol Scaling: Assign graduated symbols (e.g., circle size increases with crime rate).
  4. Map Interpretation: Analyze spatial distribution and identify hotspots or patterns.


Implementing Graduated Symbols with Quantile Classification in ArcGIS

ArcGIS allows you to apply graduated symbols and classify data using quantiles for effective spatial analysis. Below is a step-by-step guide to implementing this technique.


Step 1: Load the Data

  1. Open ArcGIS Pro or ArcMap.
  2. Click Add Data → Select the shapefile or geodatabase feature class that contains your spatial data (e.g., crime rates, population).
  3. Ensure your dataset includes a numerical field for classification (e.g., "Crime Rate per 100,000 people").

Step 2: Open the Symbology Panel

  1. Right-click on the layer in the Table of Contents.
  2. Select Symbology.
  3. Choose Graduated Symbols.

Step 3: Configure the Classification

  1. In the Symbology tab:
    • Choose the Value Field (e.g., "Crime Rate").
    • Set Normalization (optional, e.g., dividing crime counts by population size).
  2. Under Classification, select Quantile (Equal Count).
  3. Set the number of classes (e.g., 4 for quartiles, 5 for quintiles).
  4. Click Classify to generate class breaks.

Step 4: Customize Symbol Sizes

  1. Adjust the minimum and maximum symbol sizes for clear differentiation.
  2. Use proportional scaling to ensure readability.
  3. Optionally, choose circle, square, or other symbols to best represent the data.

Step 5: Finalize and Export

  1. Click Apply to preview the changes.
  2. Click OK to finalize the symbology.
  3. To export the map:
    • Go to Layout View.
    • Add a Legend, Title, Scale Bar, and North Arrow.
    • Export as PDF, PNG, or GeoTIFF.

Example Use Case: Crime Rate Mapping

  • Dataset: Crime rates in different districts.
  • Classification: Quantile (4 classes)
    • 0–250 crimes: Smallest symbol
    • 251–500 crimes: Medium symbol
    • 501–750 crimes: Large symbol
    • 751+ crimes: Largest symbol
  • Output: A clear spatial pattern showing high-crime areas.






Quantile Classification






The Graduated Symbol with Quantile Classification is a powerful GIS visualization tool that balances spatial representation with statistical fairness. It ensures that all areas receive equal emphasis, which is useful in urban planning, socio-economic studies, and environmental monitoring. However, careful interpretation is required to avoid artificial class separations and misrepresentation due to symbol scaling.

Comments

Popular posts from this blog

Disaster Management

1. Disaster Risk Analysis → Disaster Risk Reduction → Disaster Management Cycle Disaster Risk Analysis is the first step in managing disasters. It involves assessing potential hazards, identifying vulnerable populations, and estimating possible impacts. Once risks are identified, Disaster Risk Reduction (DRR) strategies come into play. DRR aims to reduce risk and enhance resilience through planning, infrastructure development, and policy enforcement. The Disaster Management Cycle then ensures a structured approach by dividing actions into pre-disaster, during-disaster, and post-disaster phases . Example Connection: Imagine a coastal city prone to cyclones: Risk Analysis identifies low-lying areas and weak infrastructure. Risk Reduction includes building seawalls, enforcing strict building codes, and training residents for emergency situations. The Disaster Management Cycle ensures ongoing preparedness, immediate response during a cyclone, and long-term recovery afterw...

Logical Data Model in GIS

In GIS, a logical data model defines how data is structured and interrelated—independent of how it is physically stored or implemented. It serves as a blueprint for designing databases, focusing on the organization of entities, their attributes, and relationships, without tying them to a specific database technology. Key Features Abstraction : The logical model operates at an abstract level, emphasizing the conceptual structure of data rather than the technical details of storage or implementation. Entity-Attribute Relationships : It identifies key entities (objects or concepts) and their attributes (properties), as well as the logical relationships between them. Business Rules : Business logic is embedded in the model to enforce rules, constraints, and conditions that ensure data consistency and accuracy. Technology Independence : The logical model is platform-agnostic—it is not tied to any specific database system or storage format. Visual Representat...

Approaches of Surface Water Management: Watershed-Based Approaches

Surface water management refers to the strategies used to regulate and optimize the availability, distribution, and quality of surface water resources such as rivers, lakes, and reservoirs. One of the most effective strategies is the watershed-based approach , which considers the entire watershed or drainage basin as a unit for water resource management, ensuring sustainability and minimizing conflicts between upstream and downstream users. 1. Watershed-Based Approaches Watershed A watershed (or drainage basin) is a geographical area where all precipitation and surface runoff flow into a common outlet such as a river, lake, or ocean. Example : The Ganga River Basin is a watershed that drains into the Bay of Bengal. Hydrological Cycle and Watershed Management Watershed-based approaches work by managing the hydrological cycle , which involves precipitation, infiltration, runoff, evapotranspiration, and groundwater recharge. Precipitation : Rainfall or snowfall within a...

Raster Data Structure

Raster Data Raster data is like a digital photo made up of small squares called cells or pixels . Each cell shows something about that spot — like how high it is (elevation), how hot it is (temperature), or what kind of land it is (forest, water, etc.). Think of it like a graph paper where each box is colored to show what's there. Key Points What's in the cell? Each cell stores information — for example, "water" or "forest." Where is the cell? The cell's location comes from its place in the grid (like row 3, column 5). We don't need to store its exact coordinates. How Do We Decide a Cell's Value? Sometimes, one cell covers more than one thing (like part forest and part water). To choose one value , we can: Center Point: Use whatever feature is in the middle. Most Area: Use the feature that takes up the most space in the cell. Most Important: Use the most important feature (like a road or well), even if it...

Disaster Management international framework

The international landscape for disaster management relies on frameworks that emphasize reducing risk, improving preparedness, and fostering resilience to protect lives, economies, and ecosystems from the impacts of natural and human-made hazards. Here's a more detailed examination of key international frameworks, with a focus on terminologies, facts, and concepts, as well as the role of the United Nations Office for Disaster Risk Reduction (UNDRR): 1. Sendai Framework for Disaster Risk Reduction 2015-2030 Adopted at the Third UN World Conference on Disaster Risk Reduction in Sendai, Japan, and endorsed by the UN General Assembly in 2015, the Sendai Framework represents a paradigm shift from disaster response to proactive disaster risk management. It applies across natural, technological, and biological hazards. Core Priorities: Understanding Disaster Risk: This includes awareness of disaster risk factors and strengthening risk assessments based on geographic, social, and econo...