Skip to main content

GIS Concepts

Spatial Data Components

  1. Location or Position

    • This defines where a spatial object exists on the Earth's surface.
    • It is represented using coordinate systems, such as:
      • Geographic Coordinate System (GCS) – Uses latitude and longitude (e.g., WGS84).
      • Projected Coordinate System (PCS) – Converts Earth's curved surface into a flat map using projections (e.g., UTM, Mercator).
    • Example: The Eiffel Tower is located at 48.8584° N, 2.2945° E in the WGS84 coordinate system.
  2. Attribute Data (Descriptive Information About Location)

    • Describes characteristics of spatial features and is stored in attribute tables.
    • Types of attribute data:
      • Nominal Data – Categories without a numerical value (e.g., land use type: residential, commercial).
      • Ordinal Data – Ranked categories (e.g., soil quality: poor, moderate, good).
      • Interval Data – Numeric values without a true zero (e.g., temperature in °C).
      • Ratio Data – Numeric values with a true zero (e.g., population count, rainfall amount).
    • Example: A river feature may have attributes like:
      River NameLength (km)Flow Rate (m³/s)Water Quality
      Ganges252516000Moderate
  3. Time (Temporal Component)

    • Captures how spatial features change over time, crucial in monitoring and trend analysis.
    • Types of temporal data:
      • Static Data – Data recorded at a single point in time (e.g., a 2020 census map).
      • Dynamic Data – Data that updates over time (e.g., satellite images showing land cover change).
    • Example: Tracking deforestation from 2000 to 2020 using Landsat satellite imagery.
  4. Spatial Relation (Topology)

    • Defines how spatial objects relate to each other in space.
    • Key topological relationships:
      • Adjacency – Whether two features share a boundary (e.g., two neighboring districts).
      • Intersection – Whether two features overlap (e.g., a river crossing a road).
      • Containment – Whether one feature is fully inside another (e.g., a lake within a park).
      • Connectivity – Whether features are linked (e.g., a railway network).
    • Example:
      • A road network where roads are connected at intersections.
      • A forest boundary that contains multiple lakes within it.

Basic Spatial Entities

Spatial features are represented using three primary geometric types:

  1. Point (0-Dimensional)

    • Represents a single location in space with no length, width, or area.
    • Example:
      • A weather station (lat: 12.9716° N, lon: 77.5946° E).
      • ATM locations in a city.
  2. Line (1-Dimensional)

    • Represents linear features with length but no width.
    • Example:
      • Roads, rivers, pipelines on a map.
      • A railway track connecting two cities.
  3. Area (Polygon) (2-Dimensional)

    • Represents features with an enclosed boundary and area.
    • Example:
      • Forest areas, land parcels, administrative boundaries.
      • A lake represented as a polygon instead of a point.

Dimensions of Spatial Data

  1. Spatial Dimension (Geographic Space)

    • Defines the actual location of objects in a coordinate system.
    • Example:
      • A city's location on a world map.
      • A satellite image's pixel coordinates in a raster grid.
  2. Thematic Dimension (Attribute Information)

    • Stores descriptive information related to a spatial feature.
    • Example:
      • A land cover map showing forest, agriculture, and urban areas.
      • A population density map with data about different regions.
  3. Temporal Dimension (Time-Based Changes)

    • Helps in studying changes over time.
    • Example:
      • A flood risk map showing changes in flood-prone areas over the last 20 years.
      • A land-use change model predicting urban expansion from 2000 to 2050.

Spatial Perspectives

  1. Location

    • Identifies the exact position of an object on Earth's surface.
    • Example:
      • The location of Mumbai is 19.0760° N, 72.8777° E.
  2. Direction

    • Refers to the relative position of one object in relation to another.
    • Example:
      • "New York is northwest of Washington, D.C."
      • "The Himalayas are north of India."
  3. Distance

    • Measures the spatial separation between two objects.
    • Types of distance measurement:
      • Euclidean Distance (straight-line distance)
      • Manhattan Distance (distance along a grid-like path)
    • Example:
      • The distance between Delhi and Chennai is about 2,200 km.
  4. Region

    • Groups areas based on common characteristics (e.g., cultural, economic, or environmental factors).
    • Types of regions:
      • Formal Regions – Defined by official boundaries (e.g., states, countries).
      • Functional Regions – Defined by a common function (e.g., a metropolitan area).
      • Perceptual Regions – Based on human perception (e.g., "The Silicon Valley").
    • Example:
      • Amazon Rainforest is a biogeographical region with high biodiversity.
  5. Association

    • Examines how different spatial features relate to each other.
    • Example:
      • High rainfall areas are often associated with dense vegetation.
      • Urban areas are associated with higher temperatures due to the heat island effect.

Comments

Popular posts from this blog

Optical Sensors in Remote Sensing

1. What Are Optical Sensors? Optical sensors are remote sensing instruments that detect solar radiation reflected or emitted from the Earth's surface in specific portions of the electromagnetic spectrum (EMS) . They mainly work in: Visible region (0.4–0.7 µm) Near-Infrared – NIR (0.7–1.3 µm) Shortwave Infrared – SWIR (1.3–3.0 µm) Thermal Infrared – TIR (8–14 µm) — emitted energy, not reflected Optical sensors capture spectral signatures of surface features. Each object reflects/absorbs energy differently, creating a unique spectral response pattern . a) Electromagnetic Spectrum (EMS) The continuous range of wavelengths. Optical sensing uses solar reflective bands and sometimes thermal bands . b) Spectral Signature The unique pattern of reflectance or absorbance of an object across wavelengths. Example: Vegetation reflects strongly in NIR Water absorbs strongly in NIR and SWIR (appears dark) c) Radiance and Reflectance Radi...

Radar Sensors in Remote Sensing

Radar sensors are active remote sensing instruments that use microwave radiation to detect and measure Earth's surface features. They transmit their own energy (radio waves) toward the Earth and record the backscattered signal that returns to the sensor. Since they do not depend on sunlight, radar systems can collect data: day or night through clouds, fog, smoke, and rain in all weather conditions This makes radar extremely useful for Earth observation. 1. Active Sensor A radar sensor produces and transmits its own microwaves. This is different from optical and thermal sensors, which depend on sunlight or emitted heat. 2. Microwave Region Radar operates in the microwave region of the electromagnetic spectrum , typically from 1 mm to 1 m wavelength. Common radar frequency bands: P-band (70 cm) L-band (23 cm) S-band (9 cm) C-band (5.6 cm) X-band (3 cm) Each band penetrates and interacts with surfaces differently: Lo...

Thermal Sensors in Remote Sensing

Thermal sensors are remote sensing instruments that detect naturally emitted thermal infrared (TIR) radiation from the Earth's surface. Unlike optical sensors (which detect reflected sunlight), thermal sensors measure heat energy emitted by objects because of their temperature. They work mainly in the Thermal Infrared region (8–14 µm) of the electromagnetic spectrum. 1. Thermal Infrared Radiation All objects above 0 Kelvin (absolute zero) emit electromagnetic radiation. This is explained by Planck's Radiation Law . For Earth's surface temperature range (about 250–330 K), the peak emitted radiation occurs in the 8–14 µm thermal window . Thus, thermal sensors detect emitted energy , not reflected sunlight. 2. Emissivity Emissivity is the efficiency with which a material emits thermal radiation. Values range from 0 to 1 : Water, vegetation → high emissivity (0.95–0.99) Bare soil → medium (0.85–0.95) Metals → low (0.1–0.3) E...

Pre During and Post Disaster

Disaster management is a structured approach aimed at reducing risks, responding effectively, and ensuring a swift recovery from disasters. It consists of three main phases: Pre-Disaster (Mitigation & Preparedness), During Disaster (Response), and Post-Disaster (Recovery). These phases involve various strategies, policies, and actions to protect lives, property, and the environment. Below is a breakdown of each phase with key concepts, terminologies, and examples. 1. Pre-Disaster Phase (Mitigation and Preparedness) Mitigation: This phase focuses on reducing the severity of a disaster by minimizing risks and vulnerabilities. It involves structural and non-structural measures. Hazard Identification: Recognizing potential natural and human-made hazards (e.g., earthquakes, floods, industrial accidents). Risk Assessment: Evaluating the probability and consequences of disasters using GIS, remote sensing, and historical data. Vulnerability Analysis: Identifying areas and p...

Geometric Correction

When satellite or aerial images are captured, they often contain distortions (errors in shape, scale, or position) caused by many factors — like Earth's curvature, satellite motion, terrain height (relief), or the Earth's rotation . These distortions make the image not properly aligned with real-world coordinates (latitude and longitude). 👉 Geometric correction is the process of removing these distortions so that every pixel in the image correctly represents its location on the Earth's surface. After geometric correction, the image becomes geographically referenced and can be used with maps and GIS data. Types  1. Systematic Correction Systematic errors are predictable and can be modeled mathematically. They occur due to the geometry and movement of the satellite sensor or the Earth. Common systematic distortions: Scan skew – due to the motion of the sensor as it scans the Earth. Mirror velocity variation – scanning mirror moves at a va...