Skip to main content

GIS Concepts

Spatial Data Components

  1. Location or Position

    • This defines where a spatial object exists on the Earth's surface.
    • It is represented using coordinate systems, such as:
      • Geographic Coordinate System (GCS) – Uses latitude and longitude (e.g., WGS84).
      • Projected Coordinate System (PCS) – Converts Earth's curved surface into a flat map using projections (e.g., UTM, Mercator).
    • Example: The Eiffel Tower is located at 48.8584° N, 2.2945° E in the WGS84 coordinate system.
  2. Attribute Data (Descriptive Information About Location)

    • Describes characteristics of spatial features and is stored in attribute tables.
    • Types of attribute data:
      • Nominal Data – Categories without a numerical value (e.g., land use type: residential, commercial).
      • Ordinal Data – Ranked categories (e.g., soil quality: poor, moderate, good).
      • Interval Data – Numeric values without a true zero (e.g., temperature in °C).
      • Ratio Data – Numeric values with a true zero (e.g., population count, rainfall amount).
    • Example: A river feature may have attributes like:
      River NameLength (km)Flow Rate (m³/s)Water Quality
      Ganges252516000Moderate
  3. Time (Temporal Component)

    • Captures how spatial features change over time, crucial in monitoring and trend analysis.
    • Types of temporal data:
      • Static Data – Data recorded at a single point in time (e.g., a 2020 census map).
      • Dynamic Data – Data that updates over time (e.g., satellite images showing land cover change).
    • Example: Tracking deforestation from 2000 to 2020 using Landsat satellite imagery.
  4. Spatial Relation (Topology)

    • Defines how spatial objects relate to each other in space.
    • Key topological relationships:
      • Adjacency – Whether two features share a boundary (e.g., two neighboring districts).
      • Intersection – Whether two features overlap (e.g., a river crossing a road).
      • Containment – Whether one feature is fully inside another (e.g., a lake within a park).
      • Connectivity – Whether features are linked (e.g., a railway network).
    • Example:
      • A road network where roads are connected at intersections.
      • A forest boundary that contains multiple lakes within it.

Basic Spatial Entities

Spatial features are represented using three primary geometric types:

  1. Point (0-Dimensional)

    • Represents a single location in space with no length, width, or area.
    • Example:
      • A weather station (lat: 12.9716° N, lon: 77.5946° E).
      • ATM locations in a city.
  2. Line (1-Dimensional)

    • Represents linear features with length but no width.
    • Example:
      • Roads, rivers, pipelines on a map.
      • A railway track connecting two cities.
  3. Area (Polygon) (2-Dimensional)

    • Represents features with an enclosed boundary and area.
    • Example:
      • Forest areas, land parcels, administrative boundaries.
      • A lake represented as a polygon instead of a point.

Dimensions of Spatial Data

  1. Spatial Dimension (Geographic Space)

    • Defines the actual location of objects in a coordinate system.
    • Example:
      • A city's location on a world map.
      • A satellite image's pixel coordinates in a raster grid.
  2. Thematic Dimension (Attribute Information)

    • Stores descriptive information related to a spatial feature.
    • Example:
      • A land cover map showing forest, agriculture, and urban areas.
      • A population density map with data about different regions.
  3. Temporal Dimension (Time-Based Changes)

    • Helps in studying changes over time.
    • Example:
      • A flood risk map showing changes in flood-prone areas over the last 20 years.
      • A land-use change model predicting urban expansion from 2000 to 2050.

Spatial Perspectives

  1. Location

    • Identifies the exact position of an object on Earth's surface.
    • Example:
      • The location of Mumbai is 19.0760° N, 72.8777° E.
  2. Direction

    • Refers to the relative position of one object in relation to another.
    • Example:
      • "New York is northwest of Washington, D.C."
      • "The Himalayas are north of India."
  3. Distance

    • Measures the spatial separation between two objects.
    • Types of distance measurement:
      • Euclidean Distance (straight-line distance)
      • Manhattan Distance (distance along a grid-like path)
    • Example:
      • The distance between Delhi and Chennai is about 2,200 km.
  4. Region

    • Groups areas based on common characteristics (e.g., cultural, economic, or environmental factors).
    • Types of regions:
      • Formal Regions – Defined by official boundaries (e.g., states, countries).
      • Functional Regions – Defined by a common function (e.g., a metropolitan area).
      • Perceptual Regions – Based on human perception (e.g., "The Silicon Valley").
    • Example:
      • Amazon Rainforest is a biogeographical region with high biodiversity.
  5. Association

    • Examines how different spatial features relate to each other.
    • Example:
      • High rainfall areas are often associated with dense vegetation.
      • Urban areas are associated with higher temperatures due to the heat island effect.

Comments

Popular posts from this blog

Photogrammetry – Types of Photographs

In photogrammetry, aerial photographs are categorized based on camera orientation , coverage , and spectral sensitivity . Below is a breakdown of the major types: 1️⃣ Based on Camera Axis Orientation Type Description Key Feature Vertical Photo Taken with the camera axis pointing directly downward (within 3° of vertical). Used for maps and measurements Oblique Photo Taken with the camera axis tilted away from vertical. Covers more area but with distortions Low Oblique: Horizon not visible High Oblique: Horizon visible 2️⃣ Based on Number of Photos Taken Type Description Single Photo One image taken of an area Stereoscopic Pair Two overlapping photos for 3D viewing and depth analysis Strip or Mosaic Series of overlapping photos covering a long area, useful in mapping large regions 3️⃣ Based on Spectral Sensitivity Type Description Application Panchromatic Captures images in black and white General mapping Infrared (IR) Sensitive to infrared radiation Veget...

Photogrammetry – Geometry of a Vertical Photograph

Photogrammetry is the science of making measurements from photographs, especially for mapping and surveying. When the camera axis is perpendicular (vertical) to the ground, the photo is called a vertical photograph , and its geometry is central to accurate mapping.  Elements of Vertical Photo Geometry In a vertical aerial photograph , the geometry is governed by the central projection principle. Here's how it works: 1. Principal Point (P) The point on the photo where the optical axis of the camera intersects the photo plane. It's the geometric center of the photo. 2. Nadir Point (N) The point on the ground directly below the camera at the time of exposure. Ideally, in a perfect vertical photo, the nadir and principal point coincide. 3. Photo Center (C) Usually coincides with the principal point in a vertical photo. 4. Ground Coordinates (X, Y, Z) Real-world (map) coordinates of objects photographed. 5. Flying Height (H) He...

Raster Data Structure

Raster Data Raster data is like a digital photo made up of small squares called cells or pixels . Each cell shows something about that spot — like how high it is (elevation), how hot it is (temperature), or what kind of land it is (forest, water, etc.). Think of it like a graph paper where each box is colored to show what's there. Key Points What's in the cell? Each cell stores information — for example, "water" or "forest." Where is the cell? The cell's location comes from its place in the grid (like row 3, column 5). We don't need to store its exact coordinates. How Do We Decide a Cell's Value? Sometimes, one cell covers more than one thing (like part forest and part water). To choose one value , we can: Center Point: Use whatever feature is in the middle. Most Area: Use the feature that takes up the most space in the cell. Most Important: Use the most important feature (like a road or well), even if it...

Logical Data Model in GIS

In GIS, a logical data model defines how data is structured and interrelated—independent of how it is physically stored or implemented. It serves as a blueprint for designing databases, focusing on the organization of entities, their attributes, and relationships, without tying them to a specific database technology. Key Features Abstraction : The logical model operates at an abstract level, emphasizing the conceptual structure of data rather than the technical details of storage or implementation. Entity-Attribute Relationships : It identifies key entities (objects or concepts) and their attributes (properties), as well as the logical relationships between them. Business Rules : Business logic is embedded in the model to enforce rules, constraints, and conditions that ensure data consistency and accuracy. Technology Independence : The logical model is platform-agnostic—it is not tied to any specific database system or storage format. Visual Representat...

Photogrammetry

Photogrammetry is the science of taking measurements from photographs —especially to create maps, models, or 3D images of objects, land, or buildings. Imagine you take two pictures of a mountain from slightly different angles. Photogrammetry uses those photos to figure out the shape, size, and position of the mountain—just like our eyes do when we see in 3D! Concepts and Terminologies 1. Photograph A picture captured by a camera , either from the ground (terrestrial) or from above (aerial or drone). 2. Stereo Pair Two overlapping photos taken from different angles. When seen together, they help create a 3D effect —just like how two human eyes work. 3. Overlap To get a 3D model, photos must overlap each other: Forward overlap : Between two photos in a flight line (usually 60–70%) Side overlap : Between adjacent flight lines (usually 30–40%) 4. Scale The ratio of the photo size to real-world size. Example: A 1:10,000 scale photo means 1 cm on the photo...