Skip to main content

GIS Concepts

Spatial Data Components

  1. Location or Position

    • This defines where a spatial object exists on the Earth's surface.
    • It is represented using coordinate systems, such as:
      • Geographic Coordinate System (GCS) – Uses latitude and longitude (e.g., WGS84).
      • Projected Coordinate System (PCS) – Converts Earth's curved surface into a flat map using projections (e.g., UTM, Mercator).
    • Example: The Eiffel Tower is located at 48.8584° N, 2.2945° E in the WGS84 coordinate system.
  2. Attribute Data (Descriptive Information About Location)

    • Describes characteristics of spatial features and is stored in attribute tables.
    • Types of attribute data:
      • Nominal Data – Categories without a numerical value (e.g., land use type: residential, commercial).
      • Ordinal Data – Ranked categories (e.g., soil quality: poor, moderate, good).
      • Interval Data – Numeric values without a true zero (e.g., temperature in °C).
      • Ratio Data – Numeric values with a true zero (e.g., population count, rainfall amount).
    • Example: A river feature may have attributes like:
      River NameLength (km)Flow Rate (m³/s)Water Quality
      Ganges252516000Moderate
  3. Time (Temporal Component)

    • Captures how spatial features change over time, crucial in monitoring and trend analysis.
    • Types of temporal data:
      • Static Data – Data recorded at a single point in time (e.g., a 2020 census map).
      • Dynamic Data – Data that updates over time (e.g., satellite images showing land cover change).
    • Example: Tracking deforestation from 2000 to 2020 using Landsat satellite imagery.
  4. Spatial Relation (Topology)

    • Defines how spatial objects relate to each other in space.
    • Key topological relationships:
      • Adjacency – Whether two features share a boundary (e.g., two neighboring districts).
      • Intersection – Whether two features overlap (e.g., a river crossing a road).
      • Containment – Whether one feature is fully inside another (e.g., a lake within a park).
      • Connectivity – Whether features are linked (e.g., a railway network).
    • Example:
      • A road network where roads are connected at intersections.
      • A forest boundary that contains multiple lakes within it.

Basic Spatial Entities

Spatial features are represented using three primary geometric types:

  1. Point (0-Dimensional)

    • Represents a single location in space with no length, width, or area.
    • Example:
      • A weather station (lat: 12.9716° N, lon: 77.5946° E).
      • ATM locations in a city.
  2. Line (1-Dimensional)

    • Represents linear features with length but no width.
    • Example:
      • Roads, rivers, pipelines on a map.
      • A railway track connecting two cities.
  3. Area (Polygon) (2-Dimensional)

    • Represents features with an enclosed boundary and area.
    • Example:
      • Forest areas, land parcels, administrative boundaries.
      • A lake represented as a polygon instead of a point.

Dimensions of Spatial Data

  1. Spatial Dimension (Geographic Space)

    • Defines the actual location of objects in a coordinate system.
    • Example:
      • A city's location on a world map.
      • A satellite image's pixel coordinates in a raster grid.
  2. Thematic Dimension (Attribute Information)

    • Stores descriptive information related to a spatial feature.
    • Example:
      • A land cover map showing forest, agriculture, and urban areas.
      • A population density map with data about different regions.
  3. Temporal Dimension (Time-Based Changes)

    • Helps in studying changes over time.
    • Example:
      • A flood risk map showing changes in flood-prone areas over the last 20 years.
      • A land-use change model predicting urban expansion from 2000 to 2050.

Spatial Perspectives

  1. Location

    • Identifies the exact position of an object on Earth's surface.
    • Example:
      • The location of Mumbai is 19.0760° N, 72.8777° E.
  2. Direction

    • Refers to the relative position of one object in relation to another.
    • Example:
      • "New York is northwest of Washington, D.C."
      • "The Himalayas are north of India."
  3. Distance

    • Measures the spatial separation between two objects.
    • Types of distance measurement:
      • Euclidean Distance (straight-line distance)
      • Manhattan Distance (distance along a grid-like path)
    • Example:
      • The distance between Delhi and Chennai is about 2,200 km.
  4. Region

    • Groups areas based on common characteristics (e.g., cultural, economic, or environmental factors).
    • Types of regions:
      • Formal Regions – Defined by official boundaries (e.g., states, countries).
      • Functional Regions – Defined by a common function (e.g., a metropolitan area).
      • Perceptual Regions – Based on human perception (e.g., "The Silicon Valley").
    • Example:
      • Amazon Rainforest is a biogeographical region with high biodiversity.
  5. Association

    • Examines how different spatial features relate to each other.
    • Example:
      • High rainfall areas are often associated with dense vegetation.
      • Urban areas are associated with higher temperatures due to the heat island effect.

Comments

Popular posts from this blog

Disaster Management

1. Disaster Risk Analysis → Disaster Risk Reduction → Disaster Management Cycle Disaster Risk Analysis is the first step in managing disasters. It involves assessing potential hazards, identifying vulnerable populations, and estimating possible impacts. Once risks are identified, Disaster Risk Reduction (DRR) strategies come into play. DRR aims to reduce risk and enhance resilience through planning, infrastructure development, and policy enforcement. The Disaster Management Cycle then ensures a structured approach by dividing actions into pre-disaster, during-disaster, and post-disaster phases . Example Connection: Imagine a coastal city prone to cyclones: Risk Analysis identifies low-lying areas and weak infrastructure. Risk Reduction includes building seawalls, enforcing strict building codes, and training residents for emergency situations. The Disaster Management Cycle ensures ongoing preparedness, immediate response during a cyclone, and long-term recovery afterw...

Logical Data Model in GIS

In GIS, a logical data model defines how data is structured and interrelated—independent of how it is physically stored or implemented. It serves as a blueprint for designing databases, focusing on the organization of entities, their attributes, and relationships, without tying them to a specific database technology. Key Features Abstraction : The logical model operates at an abstract level, emphasizing the conceptual structure of data rather than the technical details of storage or implementation. Entity-Attribute Relationships : It identifies key entities (objects or concepts) and their attributes (properties), as well as the logical relationships between them. Business Rules : Business logic is embedded in the model to enforce rules, constraints, and conditions that ensure data consistency and accuracy. Technology Independence : The logical model is platform-agnostic—it is not tied to any specific database system or storage format. Visual Representat...

Approaches of Surface Water Management: Watershed-Based Approaches

Surface water management refers to the strategies used to regulate and optimize the availability, distribution, and quality of surface water resources such as rivers, lakes, and reservoirs. One of the most effective strategies is the watershed-based approach , which considers the entire watershed or drainage basin as a unit for water resource management, ensuring sustainability and minimizing conflicts between upstream and downstream users. 1. Watershed-Based Approaches Watershed A watershed (or drainage basin) is a geographical area where all precipitation and surface runoff flow into a common outlet such as a river, lake, or ocean. Example : The Ganga River Basin is a watershed that drains into the Bay of Bengal. Hydrological Cycle and Watershed Management Watershed-based approaches work by managing the hydrological cycle , which involves precipitation, infiltration, runoff, evapotranspiration, and groundwater recharge. Precipitation : Rainfall or snowfall within a...

Raster Data Structure

Raster Data Raster data is like a digital photo made up of small squares called cells or pixels . Each cell shows something about that spot — like how high it is (elevation), how hot it is (temperature), or what kind of land it is (forest, water, etc.). Think of it like a graph paper where each box is colored to show what's there. Key Points What's in the cell? Each cell stores information — for example, "water" or "forest." Where is the cell? The cell's location comes from its place in the grid (like row 3, column 5). We don't need to store its exact coordinates. How Do We Decide a Cell's Value? Sometimes, one cell covers more than one thing (like part forest and part water). To choose one value , we can: Center Point: Use whatever feature is in the middle. Most Area: Use the feature that takes up the most space in the cell. Most Important: Use the most important feature (like a road or well), even if it...

Disaster Management international framework

The international landscape for disaster management relies on frameworks that emphasize reducing risk, improving preparedness, and fostering resilience to protect lives, economies, and ecosystems from the impacts of natural and human-made hazards. Here's a more detailed examination of key international frameworks, with a focus on terminologies, facts, and concepts, as well as the role of the United Nations Office for Disaster Risk Reduction (UNDRR): 1. Sendai Framework for Disaster Risk Reduction 2015-2030 Adopted at the Third UN World Conference on Disaster Risk Reduction in Sendai, Japan, and endorsed by the UN General Assembly in 2015, the Sendai Framework represents a paradigm shift from disaster response to proactive disaster risk management. It applies across natural, technological, and biological hazards. Core Priorities: Understanding Disaster Risk: This includes awareness of disaster risk factors and strengthening risk assessments based on geographic, social, and econo...