Skip to main content

GIS Concepts

Spatial Data Components

  1. Location or Position

    • This defines where a spatial object exists on the Earth's surface.
    • It is represented using coordinate systems, such as:
      • Geographic Coordinate System (GCS) – Uses latitude and longitude (e.g., WGS84).
      • Projected Coordinate System (PCS) – Converts Earth's curved surface into a flat map using projections (e.g., UTM, Mercator).
    • Example: The Eiffel Tower is located at 48.8584° N, 2.2945° E in the WGS84 coordinate system.
  2. Attribute Data (Descriptive Information About Location)

    • Describes characteristics of spatial features and is stored in attribute tables.
    • Types of attribute data:
      • Nominal Data – Categories without a numerical value (e.g., land use type: residential, commercial).
      • Ordinal Data – Ranked categories (e.g., soil quality: poor, moderate, good).
      • Interval Data – Numeric values without a true zero (e.g., temperature in °C).
      • Ratio Data – Numeric values with a true zero (e.g., population count, rainfall amount).
    • Example: A river feature may have attributes like:
      River NameLength (km)Flow Rate (m³/s)Water Quality
      Ganges252516000Moderate
  3. Time (Temporal Component)

    • Captures how spatial features change over time, crucial in monitoring and trend analysis.
    • Types of temporal data:
      • Static Data – Data recorded at a single point in time (e.g., a 2020 census map).
      • Dynamic Data – Data that updates over time (e.g., satellite images showing land cover change).
    • Example: Tracking deforestation from 2000 to 2020 using Landsat satellite imagery.
  4. Spatial Relation (Topology)

    • Defines how spatial objects relate to each other in space.
    • Key topological relationships:
      • Adjacency – Whether two features share a boundary (e.g., two neighboring districts).
      • Intersection – Whether two features overlap (e.g., a river crossing a road).
      • Containment – Whether one feature is fully inside another (e.g., a lake within a park).
      • Connectivity – Whether features are linked (e.g., a railway network).
    • Example:
      • A road network where roads are connected at intersections.
      • A forest boundary that contains multiple lakes within it.

Basic Spatial Entities

Spatial features are represented using three primary geometric types:

  1. Point (0-Dimensional)

    • Represents a single location in space with no length, width, or area.
    • Example:
      • A weather station (lat: 12.9716° N, lon: 77.5946° E).
      • ATM locations in a city.
  2. Line (1-Dimensional)

    • Represents linear features with length but no width.
    • Example:
      • Roads, rivers, pipelines on a map.
      • A railway track connecting two cities.
  3. Area (Polygon) (2-Dimensional)

    • Represents features with an enclosed boundary and area.
    • Example:
      • Forest areas, land parcels, administrative boundaries.
      • A lake represented as a polygon instead of a point.

Dimensions of Spatial Data

  1. Spatial Dimension (Geographic Space)

    • Defines the actual location of objects in a coordinate system.
    • Example:
      • A city's location on a world map.
      • A satellite image's pixel coordinates in a raster grid.
  2. Thematic Dimension (Attribute Information)

    • Stores descriptive information related to a spatial feature.
    • Example:
      • A land cover map showing forest, agriculture, and urban areas.
      • A population density map with data about different regions.
  3. Temporal Dimension (Time-Based Changes)

    • Helps in studying changes over time.
    • Example:
      • A flood risk map showing changes in flood-prone areas over the last 20 years.
      • A land-use change model predicting urban expansion from 2000 to 2050.

Spatial Perspectives

  1. Location

    • Identifies the exact position of an object on Earth's surface.
    • Example:
      • The location of Mumbai is 19.0760° N, 72.8777° E.
  2. Direction

    • Refers to the relative position of one object in relation to another.
    • Example:
      • "New York is northwest of Washington, D.C."
      • "The Himalayas are north of India."
  3. Distance

    • Measures the spatial separation between two objects.
    • Types of distance measurement:
      • Euclidean Distance (straight-line distance)
      • Manhattan Distance (distance along a grid-like path)
    • Example:
      • The distance between Delhi and Chennai is about 2,200 km.
  4. Region

    • Groups areas based on common characteristics (e.g., cultural, economic, or environmental factors).
    • Types of regions:
      • Formal Regions – Defined by official boundaries (e.g., states, countries).
      • Functional Regions – Defined by a common function (e.g., a metropolitan area).
      • Perceptual Regions – Based on human perception (e.g., "The Silicon Valley").
    • Example:
      • Amazon Rainforest is a biogeographical region with high biodiversity.
  5. Association

    • Examines how different spatial features relate to each other.
    • Example:
      • High rainfall areas are often associated with dense vegetation.
      • Urban areas are associated with higher temperatures due to the heat island effect.

Comments

Popular posts from this blog

geostationary and sun-synchronous

Orbital characteristics of Remote sensing satellite geostationary and sun-synchronous  Orbits in Remote Sensing Orbit = the path a satellite follows around the Earth. The orbit determines what part of Earth the satellite can see , how often it revisits , and what applications it is good for . Remote sensing satellites mainly use two standard orbits : Geostationary Orbit (GEO) Sun-Synchronous Orbit (SSO)  Geostationary Satellites (GEO) Characteristics Altitude : ~35,786 km above the equator. Period : 24 hours → same as Earth's rotation. Orbit type : Circular, directly above the equator . Appears "stationary" over one fixed point on Earth. Concepts & Terminologies Geosynchronous = orbit period matches Earth's rotation (24h). Geostationary = special type of geosynchronous orbit directly above equator → looks fixed. Continuous coverage : Can monitor the same area all the time. Applications Weather...

Disaster Management

1. Disaster Risk Analysis → Disaster Risk Reduction → Disaster Management Cycle Disaster Risk Analysis is the first step in managing disasters. It involves assessing potential hazards, identifying vulnerable populations, and estimating possible impacts. Once risks are identified, Disaster Risk Reduction (DRR) strategies come into play. DRR aims to reduce risk and enhance resilience through planning, infrastructure development, and policy enforcement. The Disaster Management Cycle then ensures a structured approach by dividing actions into pre-disaster, during-disaster, and post-disaster phases . Example Connection: Imagine a coastal city prone to cyclones: Risk Analysis identifies low-lying areas and weak infrastructure. Risk Reduction includes building seawalls, enforcing strict building codes, and training residents for emergency situations. The Disaster Management Cycle ensures ongoing preparedness, immediate response during a cyclone, and long-term recovery afterw...

Linear Arrays Along-Track Scanners or Pushbroom Scanners

Multispectral Imaging Using Linear Arrays (Along-Track Scanners or Pushbroom Scanners) Multispectral Imaging: As previously defined, this involves capturing images using multiple sensors that are sensitive to different wavelengths of electromagnetic radiation. Linear Array of Detectors (A): This refers to a row of discrete detectors arranged in a straight line. Each detector is responsible for measuring the radiation within a specific wavelength band. Focal Plane (B): This is the plane where the image is formed by the lens system. It is the location where the detectors are placed to capture the focused image. Formed by Lens Systems (C): The lens system is responsible for collecting and focusing the incoming radiation onto the focal plane. It acts like a camera lens, creating a sharp image of the scene. Ground Resolution Cell (D): As previously defined, this is the smallest area on the ground that can be resolved by a remote sensing sensor. In the case of linear array scanne...

Discrete Detectors and Scanning mirrors Across the track scanner Whisk broom scanner.

Multispectral Imaging Using Discrete Detectors and Scanning Mirrors (Across-Track Scanner or Whisk Broom Scanner) Multispectral Imaging:  This technique involves capturing images of the Earth's surface using multiple sensors that are sensitive to different wavelengths of electromagnetic radiation.  This allows for the identification of various features and materials based on their spectral signatures. Discrete Detectors:  These are individual sensors that are arranged in a linear or array configuration.  Each detector is responsible for measuring the radiation within a specific wavelength band. Scanning Mirrors:  These are optical components that are used to deflect the incoming radiation onto the discrete detectors.  By moving the mirrors,  the sensor can scan across the scene,  capturing data from different points. Across-Track Scanner or Whisk Broom Scanner:  This refers to the scanning mechanism where the mirror moves perpendicular to the direction of flight.  This allows for t...

Disaster Risk

Disaster Risk