Skip to main content

๐—•๐—ฎ๐˜€๐—ถ๐—ป ๐—ง๐˜†๐—ฝ๐—ฒ๐˜€



1. Divergent Basins (Extensional Basins)

Form due to crustal extension and thinning, commonly associated with rifting and continental breakup.

Examples: Rift basins, passive margin basins

a) Rift Basins

Develop along extensional fault zones where the lithosphere is stretched.
Characterized by normal faults, grabens, and half-grabens.
Common in early-stage continental breakup (e.g., East African Rift System, North Sea Rift).
Petroleum Significance: Excellent source rocks (lacustrine shales) and structural traps (fault-bounded reservoirs).

b) Passive Margin Basins

Found along continental margins after rifting stops and seafloor spreading begins.
Thick sequences of sediments accumulate due to thermal subsidence.
Examples: Gulf of Mexico, West African Margin.
Petroleum Significance: Rich in organic-rich marine shales (source rocks) and large sandstone reservoirs.

2. Convergent Basins (Compressional Basins)

Form due to plate collision and crustal shortening.
Examples: Foreland basins, forearc basins, backarc basins. 

a) Foreland Basins

Develop adjacent to mountain belts due to crustal loading by orogenic (mountain-building) processes.
Examples: Western Canada Sedimentary Basin, Persian Gulf Basin.
Petroleum Significance: Thick sedimentary sequences with excellent reservoirs and traps.

b) Forearc Basins

Form between an oceanic trench and a volcanic arc in subduction zones.
Examples: Peru-Chile Forearc Basin, Japan Forearc Basin.
Petroleum Significance: Complex depositional environments with potential gas accumulations.

c) Backarc Basins
)
Located behind volcanic arcs, formed due to slab rollback and extension.
Examples: Sea of Japan, South China Sea.
Petroleum Significance: Potential hydrocarbon-bearing sedimentary sequences.

3. Transform Basins (Strike-Slip Basins)

Develop along strike-slip fault zones, where crustal blocks move laterally.
Examples: San Andreas Fault Basin, Dead Sea Basin.
Petroleum Significance: Contain localized pull-apart basins with high sedimentation rates and hydrocarbon potential.

4. Intracratonic Basins

Form within stable continental interiors, often due to slow thermal subsidence.
Examples: Williston Basin (USA), Illinois Basin.
Petroleum Significance: Long-lived source rock maturation, leading to extensive hydrocarbon accumulations.

5. Cratonic Rift and Failed Rift Basins (Aulacogens)

Ancient rift basins that did not evolve into full ocean basins.
Examples: West Siberian Basin, Reelfoot Rift (USA).
Petroleum Significance: Preserve thick organic-rich sediments suitable for oil and gas generation. 

Comments

Popular posts from this blog

Platforms in Remote Sensing

In remote sensing, a platform is the physical structure or vehicle that carries a sensor (camera, scanner, radar, etc.) to observe and collect information about the Earth's surface. Platforms are classified mainly by their altitude and mobility : Ground-Based Platforms Definition : Sensors mounted on the Earth's surface or very close to it. Examples : Tripods, towers, ground vehicles, handheld instruments. Applications : Calibration and validation of satellite data Detailed local studies (e.g., soil properties, vegetation health, air quality) Strength : High spatial detail but limited coverage. Airborne Platforms Definition : Sensors carried by aircraft, balloons, or drones (UAVs). Altitude : A few hundred meters to ~20 km. Examples : Airplanes with multispectral scanners UAVs with high-resolution cameras or LiDAR High-altitude balloons (stratospheric platforms) Applications : Local-to-regional mapping ...

Types of Remote Sensing

Remote Sensing means collecting information about the Earth's surface without touching it , usually using satellites, aircraft, or drones . There are different types of remote sensing based on the energy source and the wavelength region used. ๐Ÿ›ฐ️ 1. Active Remote Sensing ๐Ÿ“˜ Concept: In active remote sensing , the sensor sends out its own energy (like a signal or pulse) to the Earth's surface. The sensor then records the reflected or backscattered energy that comes back from the surface. ⚙️ Key Terminology: Transmitter: sends energy (like a radar pulse or laser beam). Receiver: detects the energy that bounces back. Backscatter: energy that is reflected back to the sensor. ๐Ÿ“Š Examples of Active Sensors: RADAR (Radio Detection and Ranging): Uses microwave signals to detect surface roughness, soil moisture, or ocean waves. LiDAR (Light Detection and Ranging): Uses laser light (near-infrared) to measure elevation, vegetation...

Resolution of Sensors in Remote Sensing

Spatial Resolution ๐Ÿ—บ️ Definition : The smallest size of an object on the ground that a sensor can detect. Measured as : The size of a pixel on the ground (in meters). Example : Landsat → 30 m (each pixel = 30 × 30 m on Earth). WorldView-3 → 0.31 m (very detailed, you can see cars). Fact : Higher spatial resolution = finer details, but smaller coverage. Spectral Resolution ๐ŸŒˆ Definition : The ability of a sensor to capture information in different parts (bands) of the electromagnetic spectrum . Measured as : The number and width of spectral bands. Types : Panchromatic (1 broad band, e.g., black & white image). Multispectral (several broad bands, e.g., Landsat with 7–13 bands). Hyperspectral (hundreds of very narrow bands, e.g., AVIRIS). Fact : Higher spectral resolution = better identification of materials (e.g., minerals, vegetation types). Radiometric Resolution ๐Ÿ“Š Definition : The ability of a sensor to ...

Optical Sensors in Remote Sensing

1. What Are Optical Sensors? Optical sensors are remote sensing instruments that detect solar radiation reflected or emitted from the Earth's surface in specific portions of the electromagnetic spectrum (EMS) . They mainly work in: Visible region (0.4–0.7 ยตm) Near-Infrared – NIR (0.7–1.3 ยตm) Shortwave Infrared – SWIR (1.3–3.0 ยตm) Thermal Infrared – TIR (8–14 ยตm) — emitted energy, not reflected Optical sensors capture spectral signatures of surface features. Each object reflects/absorbs energy differently, creating a unique spectral response pattern . a) Electromagnetic Spectrum (EMS) The continuous range of wavelengths. Optical sensing uses solar reflective bands and sometimes thermal bands . b) Spectral Signature The unique pattern of reflectance or absorbance of an object across wavelengths. Example: Vegetation reflects strongly in NIR Water absorbs strongly in NIR and SWIR (appears dark) c) Radiance and Reflectance Radi...

geostationary and sun-synchronous

Orbital characteristics of Remote sensing satellite geostationary and sun-synchronous  Orbits in Remote Sensing Orbit = the path a satellite follows around the Earth. The orbit determines what part of Earth the satellite can see , how often it revisits , and what applications it is good for . Remote sensing satellites mainly use two standard orbits : Geostationary Orbit (GEO) Sun-Synchronous Orbit (SSO)  Geostationary Satellites (GEO) Characteristics Altitude : ~35,786 km above the equator. Period : 24 hours → same as Earth's rotation. Orbit type : Circular, directly above the equator . Appears "stationary" over one fixed point on Earth. Concepts & Terminologies Geosynchronous = orbit period matches Earth's rotation (24h). Geostationary = special type of geosynchronous orbit directly above equator → looks fixed. Continuous coverage : Can monitor the same area all the time. Applications Weather...