Skip to main content

Wetlands and Micro Watershed Management


Wetlands and micro watershed management are interconnected components of hydrological and ecological systems. Wetlands are natural water retention systems that influence watershed hydrology, while micro watershed management ensures sustainable water flow and ecosystem balance, directly impacting wetland health. Understanding their relationship is crucial for sustainable land and water resource management.

A watershed is a land area where all water drains into a common outlet, including rivers, lakes, or wetlands. A micro watershed is the smallest unit of a watershed, typically covering 500–1,000 hectares. Wetlands often occur within or at the outlet of a watershed, acting as buffers that regulate water flow, filter pollutants, and support biodiversity.

How Wetlands and Micro Watersheds are Connected

  1. Hydrological Link

    • Wetlands store excess rainfall, reducing flood risk in micro watersheds.
    • Wetlands recharge groundwater, influencing the water balance of the watershed.
  2. Soil and Water Conservation

    • Watershed management techniques like check dams and contour bunding help reduce sedimentation in wetlands.
    • Wetlands act as natural sediment traps, preventing soil loss from upstream areas.
  3. Water Quality Regulation

    • Wetlands filter agricultural runoff, preventing eutrophication in downstream water bodies.
    • Micro watershed management prevents excessive pesticide and fertilizer infiltration into wetlands.
  4. Biodiversity and Habitat Conservation

    • Healthy watersheds support wetland ecosystems, providing habitats for fish, birds, and aquatic plants.
    • Degraded watersheds cause wetland shrinkage, affecting biodiversity and ecosystem services.
  5. Climate Change Resilience

    • Wetlands mitigate droughts by storing water during dry periods.
    • Watershed management ensures sustainable land use practices, reducing climate-related impacts.
  • Hydrological Connectivity – The movement of water between wetlands, rivers, and watersheds.
  • Riparian Zones – Vegetated areas along water bodies that link wetlands and watersheds.
  • Catchment Area – The region where precipitation collects and drains into wetlands.
  • Ecosystem Services – Benefits provided by wetlands and watersheds, such as flood control and water purification.
  • Sedimentation – Deposition of soil particles in wetlands due to poor watershed management.
  • Nutrient Cycling – The movement of nutrients (e.g., nitrogen, phosphorus) between wetlands and watersheds.

  • Wetland-Watershed Interactions

1. Loktak Lake, Manipur, India

  • Wetland-Watershed Interaction:
    • Loktak Lake is fed by multiple micro watersheds in the Manipur River Basin.
    • Excess agricultural runoff from upland areas leads to phumdi (floating biomass) overgrowth, degrading the lake.
  • Watershed Management Actions:
    • Check dams and afforestation in micro watersheds reduce sediment inflow into the lake.
    • Community-based watershed programs help regulate upstream land use.

2. Chilika Lake, Odisha, India

  • Wetland-Watershed Interaction:
    • Chilika Lake, a coastal wetland, receives freshwater inflow from multiple rivers in its watershed.
    • Deforestation and agricultural expansion upstream cause increased sedimentation, shrinking the lake.
  • Watershed Management Actions:
    • The Chilika Development Authority restored river connections and implemented soil conservation practices upstream.
    • Improved micro watershed management restored hydrological balance, reducing wetland degradation.

3. Everglades, Florida, USA

  • Wetland-Watershed Interaction:
    • The Everglades is a vast wetland dependent on upstream watershed flows from Lake Okeechobee.
    • Agricultural runoff containing phosphorus led to eutrophication and habitat loss.
  • Watershed Management Actions:
    • Implementation of stormwater treatment areas (STAs) reduced nutrient inflow.
    • Watershed rehydration projects restored wetland hydrology.                                  ..
    • Integrated Approach for Wetland and Micro Watershed Management

1. Nature-Based Solutions

  • Restoring riparian buffers to protect wetlands from excess sedimentation.
  • Using constructed wetlands in micro watersheds to filter pollutants before they reach natural wetlands.

2. Policy and Governance

  • Ramsar Convention for wetland conservation, considering watershed influences.
  • Integrated Watershed Management Programme (IWMP), India, supporting wetland-watershed sustainability.

3. Community Participation

  • Farmers and local communities involved in micro watershed projects to regulate wetland impact.
  • Traditional water management practices (e.g., tank irrigation in South India) integrate wetland-watershed interactions.



Comments

Popular posts from this blog

Photogrammetry – Types of Photographs

In photogrammetry, aerial photographs are categorized based on camera orientation , coverage , and spectral sensitivity . Below is a breakdown of the major types: 1️⃣ Based on Camera Axis Orientation Type Description Key Feature Vertical Photo Taken with the camera axis pointing directly downward (within 3° of vertical). Used for maps and measurements Oblique Photo Taken with the camera axis tilted away from vertical. Covers more area but with distortions Low Oblique: Horizon not visible High Oblique: Horizon visible 2️⃣ Based on Number of Photos Taken Type Description Single Photo One image taken of an area Stereoscopic Pair Two overlapping photos for 3D viewing and depth analysis Strip or Mosaic Series of overlapping photos covering a long area, useful in mapping large regions 3️⃣ Based on Spectral Sensitivity Type Description Application Panchromatic Captures images in black and white General mapping Infrared (IR) Sensitive to infrared radiation Veget...

Photogrammetry – Geometry of a Vertical Photograph

Photogrammetry is the science of making measurements from photographs, especially for mapping and surveying. When the camera axis is perpendicular (vertical) to the ground, the photo is called a vertical photograph , and its geometry is central to accurate mapping.  Elements of Vertical Photo Geometry In a vertical aerial photograph , the geometry is governed by the central projection principle. Here's how it works: 1. Principal Point (P) The point on the photo where the optical axis of the camera intersects the photo plane. It's the geometric center of the photo. 2. Nadir Point (N) The point on the ground directly below the camera at the time of exposure. Ideally, in a perfect vertical photo, the nadir and principal point coincide. 3. Photo Center (C) Usually coincides with the principal point in a vertical photo. 4. Ground Coordinates (X, Y, Z) Real-world (map) coordinates of objects photographed. 5. Flying Height (H) He...

Raster Data Structure

Raster Data Raster data is like a digital photo made up of small squares called cells or pixels . Each cell shows something about that spot — like how high it is (elevation), how hot it is (temperature), or what kind of land it is (forest, water, etc.). Think of it like a graph paper where each box is colored to show what's there. Key Points What's in the cell? Each cell stores information — for example, "water" or "forest." Where is the cell? The cell's location comes from its place in the grid (like row 3, column 5). We don't need to store its exact coordinates. How Do We Decide a Cell's Value? Sometimes, one cell covers more than one thing (like part forest and part water). To choose one value , we can: Center Point: Use whatever feature is in the middle. Most Area: Use the feature that takes up the most space in the cell. Most Important: Use the most important feature (like a road or well), even if it...

Photogrammetry

Photogrammetry is the science of taking measurements from photographs —especially to create maps, models, or 3D images of objects, land, or buildings. Imagine you take two pictures of a mountain from slightly different angles. Photogrammetry uses those photos to figure out the shape, size, and position of the mountain—just like our eyes do when we see in 3D! Concepts and Terminologies 1. Photograph A picture captured by a camera , either from the ground (terrestrial) or from above (aerial or drone). 2. Stereo Pair Two overlapping photos taken from different angles. When seen together, they help create a 3D effect —just like how two human eyes work. 3. Overlap To get a 3D model, photos must overlap each other: Forward overlap : Between two photos in a flight line (usually 60–70%) Side overlap : Between adjacent flight lines (usually 30–40%) 4. Scale The ratio of the photo size to real-world size. Example: A 1:10,000 scale photo means 1 cm on the photo...

Flight Planning Mission

1. Define the Purpose Decide why you're doing the mission: Mapping land use? Creating a 3D model? Surveying a building or farmland? 2. Choose the Area of Interest (AOI) Mark the exact area you want to cover on a map: Set boundaries (length & width) Use coordinates (lat/long) 3. Select the Camera and Drone Pick the right tools: Camera type (sensor size, resolution) Drone (range, stability, battery life) 4. Set Flight Parameters Plan how the drone should fly: Altitude (height) – affects image size and detail Overlap : Forward overlap (between photos in the same line) – usually 60-80% Side overlap (between photo rows) – usually 30-60% Speed – slow enough for clear photos 5. Calculate Flight Lines Create the path the drone will fly : Straight lines to cover the whole area Make sure the overlap is correct Consider wind and obstacles 6. Plan Ground Control Points (GCPs) Mark known ground...