Skip to main content

Rainwater Harvesting –Significance, Types and Methods


Rainwater harvesting (RWH) is the process of collecting, storing, and utilizing rainwater for various purposes, such as domestic use, irrigation, groundwater recharge, and industrial applications. The main objective is to conserve water, reduce dependency on groundwater, and mitigate water scarcity.


  1. Catchment Area – The surface that collects rainwater (e.g., rooftops, open fields, roads).
  2. Conveyance System – The pipes, gutters, and channels that transport collected water.
  3. Filtration Unit – A system that removes debris, sediments, and contaminants.
  4. Storage Tank/Reservoir – The container used to store harvested water (underground or aboveground).
  5. Groundwater Recharge – The process of directing harvested rainwater into the ground to replenish aquifers.
  6. First Flush System – A mechanism that discards the initial rainwater to prevent contaminants from entering the storage system.

Types and Methods

1. Rooftop Rainwater Harvesting

  • Concept: Collecting rainwater from rooftops and storing it for later use.
  • Method:
    • Rainwater is collected from roof surfaces through gutters.
    • It passes through a filtration unit.
    • Water is stored in tanks or directed for groundwater recharge.
  • Example: Many urban households install rooftop harvesting systems with PVC pipes and storage tanks for domestic use.

2. Surface Runoff Harvesting

  • Concept: Capturing rainwater that flows over land and directing it to storage or recharge structures.
  • Method:
    • Constructing small check dams, percolation tanks, or ponds.
    • Diverting water from roads and pavements into recharge pits.
  • Example: Urban stormwater harvesting projects use percolation tanks to recharge groundwater.

3. Groundwater Recharge Systems

  • Concept: Diverting rainwater into aquifers to replenish underground water sources.
  • Method:
    • Constructing recharge pits, wells, or trenches.
    • Using sand, gravel, and charcoal layers for filtration before water enters the ground.
  • Example: Farmers in drought-prone areas build recharge wells to sustain borewells.

4. Check Dams and Percolation Tanks

  • Concept: Small structures built across seasonal streams to slow down water flow and increase percolation.
  • Method:
    • Constructing check dams using stones, concrete, or soil bunds.
    • Water collects behind the dam and gradually infiltrates into the ground.
  • Example: In semi-arid regions, check dams help improve groundwater levels for agriculture.

5. Rain Gardens and Bioswales

  • Concept: Landscape features designed to absorb and filter rainwater.
  • Method:
    • Creating depressions with native plants that allow water to percolate.
    • Designing sloped channels (bioswales) to direct water into the soil.
  • Example: Cities use rain gardens in parks and roadsides to reduce urban flooding.

6. Farm Ponds and Tanks

  • Concept: Storing rainwater in small reservoirs for irrigation.
  • Method:
    • Excavating farm ponds to collect rainwater.
    • Lining them with clay or plastic to reduce seepage.
  • Example: Farmers use farm ponds to store monsoon rain for use during dry periods.

Comments

Popular posts from this blog

History of GIS

1. 1832 - Early Spatial Analysis in Epidemiology:    - Charles Picquet creates a map in Paris detailing cholera deaths per 1,000 inhabitants.    - Utilizes halftone color gradients for visual representation. 2. 1854 - John Snow's Cholera Outbreak Analysis:    - Epidemiologist John Snow identifies cholera outbreak source in London using spatial analysis.    - Maps casualties' residences and nearby water sources to pinpoint the outbreak's origin. 3. Early 20th Century - Photozincography and Layered Mapping:    - Photozincography development allows maps to be split into layers for vegetation, water, etc.    - Introduction of layers, later a key feature in GIS, for separate printing plates. 4. Mid-20th Century - Computer Facilitation of Cartography:    - Waldo Tobler's 1959 publication details using computers for cartography.    - Computer hardware development, driven by nuclear weapon research, leads to broader mapping applications by early 1960s. 5. 1960 - Canada Geograph...

Accuracy Assessment

Accuracy assessment is the process of checking how correct your classified satellite image is . ๐Ÿ‘‰ After supervised classification, the satellite image is divided into classes like: Water Forest Agriculture Built-up land Barren land But classification is done using computer algorithms, so some areas may be wrongly classified . ๐Ÿ‘‰ Accuracy assessment helps to answer this question: ✔ "How much of my classified map is correct compared to real ground conditions?"  Goal The main goal is to: Measure reliability of classified maps Identify classification errors Improve classification results Provide scientific validity to research ๐Ÿ‘‰ Without accuracy assessment, a classified map is not considered scientifically reliable . Reference Data (Ground Truth Data) Reference data is real-world information used to check classification accuracy. It can be collected from: ✔ Field survey using GPS ✔ High-resolution satellite images (Google Earth etc.) ✔ Existing maps or survey reports ๐Ÿงญ Exampl...

Supervised Classification

Image Classification in Remote Sensing Image classification in remote sensing involves categorizing pixels in an image into thematic classes to produce a map. This process is essential for land use and land cover mapping, environmental studies, and resource management. The two primary methods for classification are Supervised and Unsupervised Classification . Here's a breakdown of these methods and the key stages of image classification. 1. Types of Classification Supervised Classification In supervised classification, the analyst manually defines classes of interest (known as information classes ), such as "water," "urban," or "vegetation," and identifies training areas —sections of the image that are representative of these classes. Using these training areas, the algorithm learns the spectral characteristics of each class and applies them to classify the entire image. When to Use Supervised Classification:   - You have prior knowledge about the c...

Representation of Spatial and Temporal Relationships

In GIS, spatial and temporal relationships allow the integration of location (the "where") and time (the "when") to analyze phenomena across space and time. This combination is fundamental to studying dynamic processes such as urban growth, land-use changes, or natural disasters. Key Concepts and Terminologies Geographic Coordinates : Define the position of features on Earth using latitude, longitude, or other coordinate systems. Example: A building's location can be represented as (11.6994° N, 76.0773° E). Timestamp : Represents the temporal aspect of data, such as the date or time a phenomenon was observed. Example: A landslide occurrence recorded on 30/07/2024 . Spatial and Temporal Relationships : Describes how features relate in space and time. These relationships can be: Spatial : Topological (e.g., "intersects"), directional (e.g., "north of"), or proximity-based (e.g., "near"). Temporal : Sequential (e....

Development and scope of Environmental Geography and Recent concepts in environmental Geography

Environmental Geography studies the relationship between humans and nature in a spatial (place-based) way. It combines Physical Geography (natural processes) and Human Geography (human activities). A. Early Stage ๐Ÿ”น Environmental Determinism Concept: Nature controls human life. Meaning: Climate, landforms, and soil decide how people live. Example: People in deserts (like Sahara Desert) live differently from people in fertile river valleys. ๐Ÿ”น Possibilism Concept: Humans can modify nature. Meaning: Environment gives options, but humans make choices. Example: In dry areas like Rajasthan, people use irrigation to grow crops. ๐Ÿ‘‰ In this stage, geography was mostly descriptive (explaining what exists). B. Evolution Stage (Mid-20th Century) Environmental problems increased due to: Industrialization Urbanization Deforestation Pollution Geographers started studying: Environmental degradation Resource management Human impact on ecosystems The field became analytical and problem-solving...