Skip to main content

Rainwater Harvesting –Significance, Types and Methods


Rainwater harvesting (RWH) is the process of collecting, storing, and utilizing rainwater for various purposes, such as domestic use, irrigation, groundwater recharge, and industrial applications. The main objective is to conserve water, reduce dependency on groundwater, and mitigate water scarcity.


  1. Catchment Area – The surface that collects rainwater (e.g., rooftops, open fields, roads).
  2. Conveyance System – The pipes, gutters, and channels that transport collected water.
  3. Filtration Unit – A system that removes debris, sediments, and contaminants.
  4. Storage Tank/Reservoir – The container used to store harvested water (underground or aboveground).
  5. Groundwater Recharge – The process of directing harvested rainwater into the ground to replenish aquifers.
  6. First Flush System – A mechanism that discards the initial rainwater to prevent contaminants from entering the storage system.

Types and Methods

1. Rooftop Rainwater Harvesting

  • Concept: Collecting rainwater from rooftops and storing it for later use.
  • Method:
    • Rainwater is collected from roof surfaces through gutters.
    • It passes through a filtration unit.
    • Water is stored in tanks or directed for groundwater recharge.
  • Example: Many urban households install rooftop harvesting systems with PVC pipes and storage tanks for domestic use.

2. Surface Runoff Harvesting

  • Concept: Capturing rainwater that flows over land and directing it to storage or recharge structures.
  • Method:
    • Constructing small check dams, percolation tanks, or ponds.
    • Diverting water from roads and pavements into recharge pits.
  • Example: Urban stormwater harvesting projects use percolation tanks to recharge groundwater.

3. Groundwater Recharge Systems

  • Concept: Diverting rainwater into aquifers to replenish underground water sources.
  • Method:
    • Constructing recharge pits, wells, or trenches.
    • Using sand, gravel, and charcoal layers for filtration before water enters the ground.
  • Example: Farmers in drought-prone areas build recharge wells to sustain borewells.

4. Check Dams and Percolation Tanks

  • Concept: Small structures built across seasonal streams to slow down water flow and increase percolation.
  • Method:
    • Constructing check dams using stones, concrete, or soil bunds.
    • Water collects behind the dam and gradually infiltrates into the ground.
  • Example: In semi-arid regions, check dams help improve groundwater levels for agriculture.

5. Rain Gardens and Bioswales

  • Concept: Landscape features designed to absorb and filter rainwater.
  • Method:
    • Creating depressions with native plants that allow water to percolate.
    • Designing sloped channels (bioswales) to direct water into the soil.
  • Example: Cities use rain gardens in parks and roadsides to reduce urban flooding.

6. Farm Ponds and Tanks

  • Concept: Storing rainwater in small reservoirs for irrigation.
  • Method:
    • Excavating farm ponds to collect rainwater.
    • Lining them with clay or plastic to reduce seepage.
  • Example: Farmers use farm ponds to store monsoon rain for use during dry periods.

Comments

Popular posts from this blog

geostationary and sun-synchronous

Orbital characteristics of Remote sensing satellite geostationary and sun-synchronous  Orbits in Remote Sensing Orbit = the path a satellite follows around the Earth. The orbit determines what part of Earth the satellite can see , how often it revisits , and what applications it is good for . Remote sensing satellites mainly use two standard orbits : Geostationary Orbit (GEO) Sun-Synchronous Orbit (SSO)  Geostationary Satellites (GEO) Characteristics Altitude : ~35,786 km above the equator. Period : 24 hours → same as Earth's rotation. Orbit type : Circular, directly above the equator . Appears "stationary" over one fixed point on Earth. Concepts & Terminologies Geosynchronous = orbit period matches Earth's rotation (24h). Geostationary = special type of geosynchronous orbit directly above equator → looks fixed. Continuous coverage : Can monitor the same area all the time. Applications Weather...

Types of Remote Sensing

Remote Sensing means collecting information about the Earth's surface without touching it , usually using satellites, aircraft, or drones . There are different types of remote sensing based on the energy source and the wavelength region used. 🛰️ 1. Active Remote Sensing 📘 Concept: In active remote sensing , the sensor sends out its own energy (like a signal or pulse) to the Earth's surface. The sensor then records the reflected or backscattered energy that comes back from the surface. ⚙️ Key Terminology: Transmitter: sends energy (like a radar pulse or laser beam). Receiver: detects the energy that bounces back. Backscatter: energy that is reflected back to the sensor. 📊 Examples of Active Sensors: RADAR (Radio Detection and Ranging): Uses microwave signals to detect surface roughness, soil moisture, or ocean waves. LiDAR (Light Detection and Ranging): Uses laser light (near-infrared) to measure elevation, vegetation...

Man-Made Disasters

  A man-made disaster (also called a technological disaster or anthropogenic disaster ) is a catastrophic event caused directly or indirectly by human actions , rather than natural processes. These disasters arise due to negligence, error, industrial activity, conflict, or misuse of technology , and often result in loss of life, property damage, and environmental degradation . Terminology: Anthropogenic = originating from human activity. Technological hazard = hazard caused by failure or misuse of technology or industry. 🔹 Conceptual Understanding Man-made disasters are part of the Disaster Management Cycle , which includes: Prevention – avoiding unsafe practices. Mitigation – reducing disaster impact (e.g., safety regulations). Preparedness – training and planning. Response – emergency actions after the disaster. Recovery – long-term rebuilding and policy correction. These disasters are predictable and preventable through strong...

India remote sensing

1. Foundational Phase (Early 1970s – Early 1980s) Objective: To explore the potential of space-based observation for national development. 1972: The Space Applications Programme (SAP) was initiated by the Indian Space Research Organisation (ISRO), focusing on applying space technology for societal benefits. 1975: The Department of Space (DoS) was established, providing an institutional base for space applications, including remote sensing. 1977: India began aerial and balloon-borne experiments to study Earth resources and assess how remote sensing data could aid in agriculture, forestry, and hydrology. 1978 (June 7): Bhaskara-I launched by the Soviet Union — India's first experimental Earth Observation satellite . Payloads: TV cameras (for land and ocean surface observation) and a Microwave Radiometer. Significance: Proved that satellite-based Earth observation was feasible for India's needs. 1981 (November 20): Bhaskara-II launche...

Natural Disasters

A natural disaster is a catastrophic event caused by natural processes of the Earth that results in significant loss of life, property, and environmental resources. It occurs when a hazard (potentially damaging physical event) interacts with a vulnerable population and leads to disruption of normal life . Key terms: Hazard → A potential natural event (e.g., cyclone, earthquake). Disaster → When the hazard causes widespread damage due to vulnerability. Risk → Probability of harmful consequences from interaction of hazard and vulnerability. Vulnerability → Degree to which a community or system is exposed and unable to cope with the hazard. Resilience → Ability of a system or society to recover from the disaster impact. 👉 Example: An earthquake in an uninhabited desert is a hazard , but not a disaster unless people or infrastructure are affected. Types Natural disasters can be classified into geophysical, hydrological, meteorological, clim...