Skip to main content

Prevention Mitigation Preparedness Response Recovery Rehabilitation


(DRR) aims to minimize vulnerabilities and disaster risks by systematically analyzing and managing the causes of disasters. The disaster management cycle consists of six interconnected phases: Prevention, Mitigation, Preparedness, Response, Recovery, and Rehabilitation.


1. Prevention

Definition: Actions taken to avoid the occurrence of a disaster or reduce its likelihood. Prevention eliminates disaster risks by addressing their root causes.

Key Concepts & Terminologies:

  • Hazard Prevention: Eliminating sources of potential harm (e.g., stopping illegal mining to prevent landslides).
  • Risk Avoidance: Policies that discourage risky activities (e.g., zoning laws preventing settlements in floodplains).
  • Early Warning Systems: Technology and systems to detect and prevent disasters before they occur (e.g., earthquake detection sensors).

Example:

  • Banning construction in seismic-prone areas reduces the risk of earthquake-related damages.
  • Vaccination programs prevent disease outbreaks during floods.

2. Mitigation

Definition: Measures aimed at reducing the severity or impact of disasters when they occur. Unlike prevention, mitigation assumes that some disasters are inevitable but seeks to lessen their impact.

Key Concepts & Terminologies:

  • Structural Mitigation: Physical interventions (e.g., earthquake-resistant buildings, flood barriers).
  • Non-Structural Mitigation: Policy-based actions (e.g., land-use planning, building codes).
  • Risk Reduction Strategies: Actions that lower disaster risks (e.g., afforestation to prevent soil erosion).

Example:

  • Coastal cities build seawalls to reduce the impact of tsunamis.
  • Retrofitting older buildings with earthquake-resistant technology.

3. Preparedness

Definition: Planning, training, and organizing resources to effectively respond to a disaster. Preparedness ensures that individuals, communities, and institutions are equipped to handle emergencies.

Key Concepts & Terminologies:

  • Contingency Planning: Developing action plans for different disaster scenarios.
  • Community Preparedness: Educating and training local populations on emergency protocols.
  • Emergency Supplies: Stockpiling food, water, medicine, and other essentials.

Example:

  • Conducting earthquake drills in schools and offices.
  • Setting up emergency shelters in cyclone-prone areas.

4. Response

Definition: Immediate actions taken during and immediately after a disaster to protect lives, property, and the environment. Response focuses on emergency aid, rescue, and relief efforts.

Key Concepts & Terminologies:

  • Search and Rescue Operations: Locating and helping survivors in disaster-stricken areas.
  • Emergency Medical Assistance: Setting up field hospitals and providing healthcare services.
  • Humanitarian Aid: Distributing food, water, and temporary shelters.

Example:

  • Deploying National Disaster Response Force (NDRF) teams after an earthquake.
  • Sending helicopters to rescue people stranded in floods.

5. Recovery

Definition: Short- to medium-term activities aimed at restoring normalcy in affected communities. Recovery includes rebuilding infrastructure and providing psychological support.

Key Concepts & Terminologies:

  • Short-term Recovery: Restoring essential services (e.g., electricity, water supply).
  • Long-term Recovery: Rebuilding communities and restoring livelihoods.
  • Economic Rehabilitation: Reviving businesses and providing financial aid to affected people.

Example:

  • Restoring power lines and reopening schools after a hurricane.
  • Providing financial assistance to farmers after a drought.

6. Rehabilitation

Definition: Long-term actions focused on rebuilding communities and improving resilience to future disasters. Rehabilitation aims for sustainable development by addressing social, economic, and environmental aspects.

Key Concepts & Terminologies:

  • Infrastructure Rehabilitation: Constructing stronger roads, bridges, and buildings.
  • Environmental Rehabilitation: Reforestation and soil conservation projects.
  • Social Rehabilitation: Psychological counseling and support programs for affected populations.

Example:

  • Rebuilding earthquake-resistant housing for displaced families.
  • Implementing sustainable agriculture practices in drought-prone areas

Comments

Popular posts from this blog

History of GIS

1. 1832 - Early Spatial Analysis in Epidemiology:    - Charles Picquet creates a map in Paris detailing cholera deaths per 1,000 inhabitants.    - Utilizes halftone color gradients for visual representation. 2. 1854 - John Snow's Cholera Outbreak Analysis:    - Epidemiologist John Snow identifies cholera outbreak source in London using spatial analysis.    - Maps casualties' residences and nearby water sources to pinpoint the outbreak's origin. 3. Early 20th Century - Photozincography and Layered Mapping:    - Photozincography development allows maps to be split into layers for vegetation, water, etc.    - Introduction of layers, later a key feature in GIS, for separate printing plates. 4. Mid-20th Century - Computer Facilitation of Cartography:    - Waldo Tobler's 1959 publication details using computers for cartography.    - Computer hardware development, driven by nuclear weapon research, leads to broader mapping applications by early 1960s. 5. 1960 - Canada Geograph...

Accuracy Assessment

Accuracy assessment is the process of checking how correct your classified satellite image is . 👉 After supervised classification, the satellite image is divided into classes like: Water Forest Agriculture Built-up land Barren land But classification is done using computer algorithms, so some areas may be wrongly classified . 👉 Accuracy assessment helps to answer this question: ✔ "How much of my classified map is correct compared to real ground conditions?"  Goal The main goal is to: Measure reliability of classified maps Identify classification errors Improve classification results Provide scientific validity to research 👉 Without accuracy assessment, a classified map is not considered scientifically reliable . Reference Data (Ground Truth Data) Reference data is real-world information used to check classification accuracy. It can be collected from: ✔ Field survey using GPS ✔ High-resolution satellite images (Google Earth etc.) ✔ Existing maps or survey reports 🧭 Exampl...

Supervised Classification

Image Classification in Remote Sensing Image classification in remote sensing involves categorizing pixels in an image into thematic classes to produce a map. This process is essential for land use and land cover mapping, environmental studies, and resource management. The two primary methods for classification are Supervised and Unsupervised Classification . Here's a breakdown of these methods and the key stages of image classification. 1. Types of Classification Supervised Classification In supervised classification, the analyst manually defines classes of interest (known as information classes ), such as "water," "urban," or "vegetation," and identifies training areas —sections of the image that are representative of these classes. Using these training areas, the algorithm learns the spectral characteristics of each class and applies them to classify the entire image. When to Use Supervised Classification:   - You have prior knowledge about the c...

Development and scope of Environmental Geography and Recent concepts in environmental Geography

Environmental Geography studies the relationship between humans and nature in a spatial (place-based) way. It combines Physical Geography (natural processes) and Human Geography (human activities). A. Early Stage 🔹 Environmental Determinism Concept: Nature controls human life. Meaning: Climate, landforms, and soil decide how people live. Example: People in deserts (like Sahara Desert) live differently from people in fertile river valleys. 🔹 Possibilism Concept: Humans can modify nature. Meaning: Environment gives options, but humans make choices. Example: In dry areas like Rajasthan, people use irrigation to grow crops. 👉 In this stage, geography was mostly descriptive (explaining what exists). B. Evolution Stage (Mid-20th Century) Environmental problems increased due to: Industrialization Urbanization Deforestation Pollution Geographers started studying: Environmental degradation Resource management Human impact on ecosystems The field became analytical and problem-solving...

GIS: Real World and Representations - Modeling and Maps

Geographic Information Systems (GIS) serve as a bridge between the real world and digital representations of geographic phenomena. These representations allow users to store, analyze, and visualize spatial data for informed decision-making. Two key aspects of GIS in this context are modeling and maps , both of which are used to represent real-world geographic features and phenomena in a structured, analyzable format. Let's delve into these concepts, terminologies, and examples in detail. 1. Real World and Representations in GIS Concept: The real world comprises physical, tangible phenomena, such as landforms, rivers, cities, and infrastructure, as well as more abstract elements like weather patterns, population densities, and traffic flow. GIS allows us to represent these real-world phenomena digitally, enabling spatial analysis, decision-making, and visualization. The representation of the real world in GIS is achieved through various models and maps , which simplify...