Skip to main content

Prevention Mitigation Preparedness Response Recovery Rehabilitation


(DRR) aims to minimize vulnerabilities and disaster risks by systematically analyzing and managing the causes of disasters. The disaster management cycle consists of six interconnected phases: Prevention, Mitigation, Preparedness, Response, Recovery, and Rehabilitation.


1. Prevention

Definition: Actions taken to avoid the occurrence of a disaster or reduce its likelihood. Prevention eliminates disaster risks by addressing their root causes.

Key Concepts & Terminologies:

  • Hazard Prevention: Eliminating sources of potential harm (e.g., stopping illegal mining to prevent landslides).
  • Risk Avoidance: Policies that discourage risky activities (e.g., zoning laws preventing settlements in floodplains).
  • Early Warning Systems: Technology and systems to detect and prevent disasters before they occur (e.g., earthquake detection sensors).

Example:

  • Banning construction in seismic-prone areas reduces the risk of earthquake-related damages.
  • Vaccination programs prevent disease outbreaks during floods.

2. Mitigation

Definition: Measures aimed at reducing the severity or impact of disasters when they occur. Unlike prevention, mitigation assumes that some disasters are inevitable but seeks to lessen their impact.

Key Concepts & Terminologies:

  • Structural Mitigation: Physical interventions (e.g., earthquake-resistant buildings, flood barriers).
  • Non-Structural Mitigation: Policy-based actions (e.g., land-use planning, building codes).
  • Risk Reduction Strategies: Actions that lower disaster risks (e.g., afforestation to prevent soil erosion).

Example:

  • Coastal cities build seawalls to reduce the impact of tsunamis.
  • Retrofitting older buildings with earthquake-resistant technology.

3. Preparedness

Definition: Planning, training, and organizing resources to effectively respond to a disaster. Preparedness ensures that individuals, communities, and institutions are equipped to handle emergencies.

Key Concepts & Terminologies:

  • Contingency Planning: Developing action plans for different disaster scenarios.
  • Community Preparedness: Educating and training local populations on emergency protocols.
  • Emergency Supplies: Stockpiling food, water, medicine, and other essentials.

Example:

  • Conducting earthquake drills in schools and offices.
  • Setting up emergency shelters in cyclone-prone areas.

4. Response

Definition: Immediate actions taken during and immediately after a disaster to protect lives, property, and the environment. Response focuses on emergency aid, rescue, and relief efforts.

Key Concepts & Terminologies:

  • Search and Rescue Operations: Locating and helping survivors in disaster-stricken areas.
  • Emergency Medical Assistance: Setting up field hospitals and providing healthcare services.
  • Humanitarian Aid: Distributing food, water, and temporary shelters.

Example:

  • Deploying National Disaster Response Force (NDRF) teams after an earthquake.
  • Sending helicopters to rescue people stranded in floods.

5. Recovery

Definition: Short- to medium-term activities aimed at restoring normalcy in affected communities. Recovery includes rebuilding infrastructure and providing psychological support.

Key Concepts & Terminologies:

  • Short-term Recovery: Restoring essential services (e.g., electricity, water supply).
  • Long-term Recovery: Rebuilding communities and restoring livelihoods.
  • Economic Rehabilitation: Reviving businesses and providing financial aid to affected people.

Example:

  • Restoring power lines and reopening schools after a hurricane.
  • Providing financial assistance to farmers after a drought.

6. Rehabilitation

Definition: Long-term actions focused on rebuilding communities and improving resilience to future disasters. Rehabilitation aims for sustainable development by addressing social, economic, and environmental aspects.

Key Concepts & Terminologies:

  • Infrastructure Rehabilitation: Constructing stronger roads, bridges, and buildings.
  • Environmental Rehabilitation: Reforestation and soil conservation projects.
  • Social Rehabilitation: Psychological counseling and support programs for affected populations.

Example:

  • Rebuilding earthquake-resistant housing for displaced families.
  • Implementing sustainable agriculture practices in drought-prone areas

Comments

Popular posts from this blog

Geologic and tectonic framework of the Indian shield

  Major Terms and Regions Explained 1. Indian Shield The Indian Shield refers to the ancient, stable core of the Indian Plate made of hard crystalline rocks. It comprises Archean to Proterozoic rocks that have remained tectonically stable over billions of years. Important Geological Features and Regions ▪️ Ch – Chhattisgarh Basin A sedimentary basin part of the Bastar Craton . Contains rocks of Proterozoic age , mainly sedimentary. Important for understanding the evolution of central India. ▪️ CIS – Central Indian Shear Zone A major tectonic shear zone , separating the Bundelkhand and Bastar cratons . It records intense deformation and metamorphism . Acts as a suture zone , marking ancient tectonic collisions. ▪️ GR – Godavari Rift A rift valley formed due to stretching and thinning of the Earth's crust. Associated with sedimentary basins and hydrocarbon resources . ▪️ M – Madras Block An Archean crustal block in...

Geology and Tectonic. Indian Shield

1. Ch (Chattisgarh Basin): Chattisgarh Basin is a geological region in central India known for its sedimentary rock formations. It's important for its mineral resources, including coal and iron ore. 2. CIS (Central Indian Shear Zone): CIS is a tectonic boundary in central India where the Indian Plate interacts with the Eurasian Plate. It's characterized by significant faulting and seismic activity. 3. GR (Godavari Rift): The Godavari Rift is a geological feature associated with the rifting and splitting of the Indian Plate. It's located in the Godavari River basin in southeastern India. 4. M (Madras Block): The Madras Block is a stable continental block in southern India. It's part of the Indian Plate and is not associated with active tectonic processes. 5. Mk (Malanjkhand): Malanjkhand is known for its copper deposits and is one of the largest copper mines in India. 6. MR (Mahanadi Rift): The Mahanadi Rift is a geological feature related to the rifting of the Indian Pl...

Evaluation and Characteristics of Himalayas

Time Period Event / Process Geological Evidence Key Terms & Concepts Late Precambrian – Palaeozoic (>541 Ma – ~250 Ma) India part of Gondwana , north bordered by Cimmerian Superterranes, separated from Eurasia by Paleo-Tethys Ocean . Pan-African granitic intrusions (~500 Ma), unconformity between Ordovician conglomerates & Cambrian sediments. Gondwana, Paleo-Tethys Ocean, Pan-African orogeny, unconformity, granitic intrusions, Cimmerian Superterranes. Early Carboniferous – Early Permian (~359 – 272 Ma) Rifting between India & Cimmerian Superterranes → Neotethys Ocean formation. Rift-related sediments, passive margin sequences. Rifting, Neotethys Ocean, passive continental margin. Norian (210 Ma) – Callovian (160–155 Ma) Gondwana split into East & West; India part of East Gondwana with Australia & Antarctica. Rift basins, oceanic crust formation. Continental breakup, East Gondwana, West Gondwana, oceanic crust. Early Cretaceous (130–125 Ma) India broke fr...

Seismicity and Earthquakes, Isostasy and Gravity

1. Seismicity and Earthquakes in the Indian Subcontinent Key Concept: Seismicity Definition : The occurrence, frequency, and magnitude of earthquakes in a region. In India, seismicity is high due to active tectonic processes . Plate Tectonics 🌏 Indian Plate : Moves northward at about 5 cm/year. Collision with Eurasian Plate : Causes intense crustal deformation , mountain building (Himalayas), and earthquakes. This is an example of a continental-continental collision zone . Seismic Zones of India Classified into Zone II, III, IV, V (Bureau of Indian Standards, BIS). Zone V = highest hazard (e.g., Himalayas, Northeast India). Zone II = lowest hazard (e.g., parts of peninsular India). Earthquake Hazards ⚠️ Himalayas: prone to large shallow-focus earthquakes due to active thrust faulting. Northeast India: complex subduction and strike-slip faults . Examples: 1897 Shillong Earthquake (Magnitude ~8.1) 1950 Assam–Tib...

Vector geoprocessing - Clipping, Erase, identify, Union & Intersection

Think of your vector data (points, lines, polygons) like shapes drawn on a transparent sheet. Geoprocessing is just cutting, joining, or comparing those shapes to get new shapes or information. 1. Clipping ✂️ Imagine you have a big map and you only want to keep a part of it (like cutting a photo into a smaller rectangle). You use another shape (like the boundary of a district) to "clip" and keep only what is inside. Result: Only the data inside the clipping shape remains. 2. Erase 🚫 Opposite of clipping. You remove (erase) the area of one shape from another shape. Example: You have a city map and want to remove all the park areas from it. 3. Identify 🔍 This checks which features from one layer fall inside (or touch) another layer. Example: Identify all the schools inside a flood zone. 4. Union 🤝 Combines two shapes together and keeps everything from both. Works like stacking two transparent sheets and redrawing t...