Skip to main content

Metadata

Metadata?

GIS metadata refers to structured information that describes the characteristics of a geographic dataset. It acts as a "data label" that provides essential details about the dataset, including its source, accuracy, projection, format, and usage constraints. Metadata ensures that GIS data is properly understood, used, and shared across different systems and organizations.

Key Terminologies in GIS Metadata

  • Spatial Metadata: Metadata specifically related to the geographic properties of a dataset, such as coordinate reference system and projection.
  • Data Provenance: The history of a dataset, including its origin, transformations, and modifications.
  • Data Lineage: A record of the steps and processes applied to a dataset, ensuring transparency in data processing.
  • Interoperability: The ability of GIS data to be shared and used across different software and organizations due to standardized metadata.
  • Data Discovery: The process of searching and retrieving datasets based on metadata descriptions.

Importance of GIS Metadata Standards

Metadata standards provide a structured format for documenting spatial data, ensuring consistency, interoperability, and usability across GIS platforms.

1. Consistency

Metadata standards ensure that geospatial data is documented in a uniform manner, making it easier to interpret and compare datasets.

Example: A national database of flood risk maps follows ISO 19115 standards, ensuring that all maps use the same metadata structure, making them easy to integrate.

2. Interoperability

Standardized metadata allows GIS datasets to be shared between different organizations, ensuring seamless integration and analysis.

Example: A city planning department uses FGDC metadata standards, allowing GIS data to be easily shared with federal agencies for disaster response planning.

3. Data Discovery

Comprehensive metadata enables efficient searching and retrieval of relevant GIS datasets in a database or a spatial data infrastructure (SDI).

Example: A researcher looking for deforestation data can filter datasets by date, resolution, or accuracy using metadata records.


Key Components of GIS Metadata

Metadata records include several core components that define a dataset's characteristics:

1. Data Identification

  • Dataset Name: The official name of the dataset.
  • Creator: The organization or individual who created the dataset.
  • Date Created: The date the dataset was generated or last updated.
  • Contact Information: Details for inquiries about the dataset.

Example:
A dataset named "Land Cover Classification - India 2024" includes metadata stating that it was created by the Indian Space Research Organization (ISRO) on January 5, 2024, with contact information for ISRO's GIS department.

2. Spatial Reference

  • Coordinate System: Defines how the spatial data is positioned on Earth (e.g., WGS 84, NAD 83).
  • Projection: The method used to represent the curved Earth on a flat surface (e.g., UTM, Mercator).
  • Datum: The reference point for the coordinate system (e.g., WGS 84, GCS).

Example:
A GIS dataset of India's coastline includes metadata stating that the data uses the WGS 84 coordinate system with a UTM Zone 44N projection.

3. Data Quality

  • Positional Accuracy: The level of accuracy of spatial coordinates.
  • Attribute Accuracy: The correctness of non-spatial data linked to geographic features.
  • Lineage: The source and processing steps taken to create the dataset.
  • Limitations: Any known issues or constraints in the dataset.

Example:
A forest cover map derived from Landsat-8 imagery includes metadata stating that the positional accuracy is ±15 meters, and classification errors may exist in areas with cloud cover.

4. Attribute Information

  • Field Descriptions: A breakdown of attributes within the dataset.
  • Data Types: Specifies whether attributes are numeric, categorical, or text-based.

Example:
A land use dataset includes an attribute table with metadata stating:

  • "Land_Type" (categorical) – values: "Forest," "Urban," "Agriculture."
  • "Area_sqkm" (numeric) – values: 100.5, 45.2, etc.

5. Access and Usage Constraints

  • License Type: Specifies whether the dataset is open-access or restricted.
  • Copyright Information: Defines who owns the data and how it can be used.
  • Confidentiality: Indicates if any part of the dataset is sensitive.

Example:
A wildlife habitat dataset has metadata stating:

  • License: CC BY 4.0 (free for public use with attribution).
  • Restrictions: Cannot be used for commercial purposes.

Common GIS Metadata Standards

Several metadata standards exist globally to ensure structured documentation of geospatial datasets:

Metadata StandardDescriptionRegion
ISO 19115International standard for geospatial metadata.Global
FGDC (Federal Geographic Data Committee)U.S. metadata standard used for federal geospatial datasets.United States
INSPIRE Metadata DirectiveStandardized metadata format for EU spatial data.European Union
Dublin CoreGeneral metadata standard used for various types of datasets, including GIS.Global

Example:
An air quality monitoring dataset from a U.S. environmental agency follows FGDC metadata standards, making it compatible with other U.S. government GIS datasets.


Significance of GIS Metadata

1. Informed Decision-Making

  • Users can assess whether a dataset is suitable for their analysis based on accuracy, resolution, and data limitations.
  • Example: A city planner evaluating road network data checks the metadata accuracy level before using it for infrastructure development.

2. Data Quality Control

  • Helps identify potential errors in data collection and processing.
  • Example: A climate scientist analyzes metadata to verify the sensor calibration details of satellite temperature data.

3. Data Sharing and Collaboration

  • Ensures seamless data exchange between researchers, agencies, and GIS professionals.
  • Example: A disaster response team shares GIS flood models using ISO 19115 metadata, allowing emergency responders to access and integrate the data quickly.

Comments

Popular posts from this blog

Natural Disasters

A natural disaster is a catastrophic event caused by natural processes of the Earth that results in significant loss of life, property, and environmental resources. It occurs when a hazard (potentially damaging physical event) interacts with a vulnerable population and leads to disruption of normal life . Key terms: Hazard → A potential natural event (e.g., cyclone, earthquake). Disaster → When the hazard causes widespread damage due to vulnerability. Risk → Probability of harmful consequences from interaction of hazard and vulnerability. Vulnerability → Degree to which a community or system is exposed and unable to cope with the hazard. Resilience → Ability of a system or society to recover from the disaster impact. 👉 Example: An earthquake in an uninhabited desert is a hazard , but not a disaster unless people or infrastructure are affected. Types Natural disasters can be classified into geophysical, hydrological, meteorological, clim...

Types of Remote Sensing

Remote Sensing means collecting information about the Earth's surface without touching it , usually using satellites, aircraft, or drones . There are different types of remote sensing based on the energy source and the wavelength region used. 🛰️ 1. Active Remote Sensing 📘 Concept: In active remote sensing , the sensor sends out its own energy (like a signal or pulse) to the Earth's surface. The sensor then records the reflected or backscattered energy that comes back from the surface. ⚙️ Key Terminology: Transmitter: sends energy (like a radar pulse or laser beam). Receiver: detects the energy that bounces back. Backscatter: energy that is reflected back to the sensor. 📊 Examples of Active Sensors: RADAR (Radio Detection and Ranging): Uses microwave signals to detect surface roughness, soil moisture, or ocean waves. LiDAR (Light Detection and Ranging): Uses laser light (near-infrared) to measure elevation, vegetation...

geostationary and sun-synchronous

Orbital characteristics of Remote sensing satellite geostationary and sun-synchronous  Orbits in Remote Sensing Orbit = the path a satellite follows around the Earth. The orbit determines what part of Earth the satellite can see , how often it revisits , and what applications it is good for . Remote sensing satellites mainly use two standard orbits : Geostationary Orbit (GEO) Sun-Synchronous Orbit (SSO)  Geostationary Satellites (GEO) Characteristics Altitude : ~35,786 km above the equator. Period : 24 hours → same as Earth's rotation. Orbit type : Circular, directly above the equator . Appears "stationary" over one fixed point on Earth. Concepts & Terminologies Geosynchronous = orbit period matches Earth's rotation (24h). Geostationary = special type of geosynchronous orbit directly above equator → looks fixed. Continuous coverage : Can monitor the same area all the time. Applications Weather...

Linear Arrays Along-Track Scanners or Pushbroom Scanners

Multispectral Imaging Using Linear Arrays (Along-Track Scanners or Pushbroom Scanners) Multispectral Imaging: As previously defined, this involves capturing images using multiple sensors that are sensitive to different wavelengths of electromagnetic radiation. Linear Array of Detectors (A): This refers to a row of discrete detectors arranged in a straight line. Each detector is responsible for measuring the radiation within a specific wavelength band. Focal Plane (B): This is the plane where the image is formed by the lens system. It is the location where the detectors are placed to capture the focused image. Formed by Lens Systems (C): The lens system is responsible for collecting and focusing the incoming radiation onto the focal plane. It acts like a camera lens, creating a sharp image of the scene. Ground Resolution Cell (D): As previously defined, this is the smallest area on the ground that can be resolved by a remote sensing sensor. In the case of linear array scanne...

India remote sensing

1. Foundational Phase (Early 1970s – Early 1980s) Objective: To explore the potential of space-based observation for national development. 1972: The Space Applications Programme (SAP) was initiated by the Indian Space Research Organisation (ISRO), focusing on applying space technology for societal benefits. 1975: The Department of Space (DoS) was established, providing an institutional base for space applications, including remote sensing. 1977: India began aerial and balloon-borne experiments to study Earth resources and assess how remote sensing data could aid in agriculture, forestry, and hydrology. 1978 (June 7): Bhaskara-I launched by the Soviet Union — India's first experimental Earth Observation satellite . Payloads: TV cameras (for land and ocean surface observation) and a Microwave Radiometer. Significance: Proved that satellite-based Earth observation was feasible for India's needs. 1981 (November 20): Bhaskara-II launche...