Skip to main content

Landslide Upslope Downslope Factors

Landslides occur when the driving forces (gravity, water saturation, seismic activity) exceed the resisting forces (cohesion, friction, vegetation cover) on a slope. To understand landslide dynamics, we classify contributing factors into:

  1. Upslope Factors – Conditions on the upper part of the slope that contribute to instability.
  2. Downslope Factors – Conditions at the base that further exacerbate landslides, often by removing support or altering water flow.

1. Upslope Factors

(a) Steep Slope Angle (Gradient Effect)

  • A higher slope gradient increases shear stress, making the slope more susceptible to failure.
  • Angle of Repose: The maximum angle at which a material remains stable; exceeding this angle leads to landslides.
  • Example: The Himalayan region has high landslide risks due to steep slopes and tectonic activity.

(b) Weak Soil or Rock Type

  • Lithology (rock type) determines slope strength.
  • Clay-rich soils (e.g., montmorillonite) expand when wet, reducing stability.
  • Weathered rocks (e.g., shale, phyllite) lose cohesion over time.
  • Example: Western Ghats experience landslides in lateritic soils after monsoon rains.

(c) Vegetation Cover

  • Roots reinforce soil and absorb excess water.
  • Deforestation increases erosion and runoff.
  • Example: Amazon Basin has stable slopes due to dense tree cover, while Haiti suffers from deforestation-induced landslides.

(d) Water Saturation (Pore Water Pressure Effect)

  • Hydrostatic pressure increases soil weight and reduces internal friction.
  • Infiltration capacity varies; sandy soils drain better than clayey soils.
  • Example: Uttarakhand floods (2013) triggered landslides due to excessive rainfall.

(e) Joints and Fissures

  • Geological discontinuities (faults, bedding planes, joints) act as failure planes.
  • Example: The San Andreas Fault in California increases landslide risks due to active tectonics.

(f) Human Disturbances

  • Construction (roads, dams) alters load distribution.
  • Mining induces vibrations and weakens slopes.
  • Example: The Malin landslide (Maharashtra, India, 2014) was worsened by hill cutting for agriculture.

2. Downslope Factors

(a) Erosion at the Base

  • Undercutting by rivers, waves, or glaciers removes slope support.
  • Example: Konkan coast, India experiences coastal landslides due to wave erosion.

(b) Changes in Water Table

  • High groundwater levels increase pore pressure and reduce cohesion.
  • Example: Oso landslide (Washington, USA, 2014) was linked to high water table changes.

(c) Steep Channel Gradients

  • Accelerated water flow scours the base, destabilizing the slope.
  • Example: Teesta River valley, Sikkim has landslide-prone zones due to steep stream gradients.

(d) Presence of Debris

  • Accumulated sediments create barriers, leading to sudden failures.
  • Example: Landslide dams in Nepal Himalayas cause flash floods when breached.

(e) Previous Landslide Activity

  • Remobilization of old debris increases future risks.
  • Example: Darjeeling region experiences recurring landslides due to historical instability.
  • Interplay Between Factors: Upslope and downslope factors often act together.
  • Mitigation Strategies:
    • Upslope: Reforestation, slope drainage, terracing.
    • Downslope: Retaining walls, river training, landslide barriers.
  • GIS-Based Risk Mapping: Combining remote sensing and Digital Elevation Models (DEM) helps in hazard prediction.

Comments

Popular posts from this blog

Evaluation and Characteristics of Himalayas

Time Period Event / Process Geological Evidence Key Terms & Concepts Late Precambrian – Palaeozoic (>541 Ma – ~250 Ma) India part of Gondwana , north bordered by Cimmerian Superterranes, separated from Eurasia by Paleo-Tethys Ocean . Pan-African granitic intrusions (~500 Ma), unconformity between Ordovician conglomerates & Cambrian sediments. Gondwana, Paleo-Tethys Ocean, Pan-African orogeny, unconformity, granitic intrusions, Cimmerian Superterranes. Early Carboniferous – Early Permian (~359 – 272 Ma) Rifting between India & Cimmerian Superterranes → Neotethys Ocean formation. Rift-related sediments, passive margin sequences. Rifting, Neotethys Ocean, passive continental margin. Norian (210 Ma) – Callovian (160–155 Ma) Gondwana split into East & West; India part of East Gondwana with Australia & Antarctica. Rift basins, oceanic crust formation. Continental breakup, East Gondwana, West Gondwana, oceanic crust. Early Cretaceous (130–125 Ma) India broke fr...

Seismicity and Earthquakes, Isostasy and Gravity

1. Seismicity and Earthquakes in the Indian Subcontinent Key Concept: Seismicity Definition : The occurrence, frequency, and magnitude of earthquakes in a region. In India, seismicity is high due to active tectonic processes . Plate Tectonics 🌏 Indian Plate : Moves northward at about 5 cm/year. Collision with Eurasian Plate : Causes intense crustal deformation , mountain building (Himalayas), and earthquakes. This is an example of a continental-continental collision zone . Seismic Zones of India Classified into Zone II, III, IV, V (Bureau of Indian Standards, BIS). Zone V = highest hazard (e.g., Himalayas, Northeast India). Zone II = lowest hazard (e.g., parts of peninsular India). Earthquake Hazards ⚠️ Himalayas: prone to large shallow-focus earthquakes due to active thrust faulting. Northeast India: complex subduction and strike-slip faults . Examples: 1897 Shillong Earthquake (Magnitude ~8.1) 1950 Assam–Tib...

geostationary and sun-synchronous

Orbital characteristics of Remote sensing satellite geostationary and sun-synchronous  Orbits in Remote Sensing Orbit = the path a satellite follows around the Earth. The orbit determines what part of Earth the satellite can see , how often it revisits , and what applications it is good for . Remote sensing satellites mainly use two standard orbits : Geostationary Orbit (GEO) Sun-Synchronous Orbit (SSO)  Geostationary Satellites (GEO) Characteristics Altitude : ~35,786 km above the equator. Period : 24 hours → same as Earth's rotation. Orbit type : Circular, directly above the equator . Appears "stationary" over one fixed point on Earth. Concepts & Terminologies Geosynchronous = orbit period matches Earth's rotation (24h). Geostationary = special type of geosynchronous orbit directly above equator → looks fixed. Continuous coverage : Can monitor the same area all the time. Applications Weather...

Network data model

GIS, a network data model is used to represent and study things that are connected like a web — for example, roads, rivers, railway tracks, water pipes, or electric lines . It focuses on how things are connected and helps us solve problems like finding the best route, the nearest hospital, or where water will flow. Nodes → Points where things meet or end (e.g., road intersections, railway stations, pumping stations). Edges → Lines connecting the nodes (e.g., roads, pipelines, cables). Topology → The "rules" of connection — which node is linked to which edge. Attributes → Extra details about each part (e.g., road speed limit, pipe size, traffic volume). How It Works 🔍 Make the Network Model Start with a map of lines (roads, pipes, rivers) and mark how they connect. Run Analyses Routing → Find the shortest or fastest path. Closest Facility → Find the nearest hospital, petrol station, etc. Service Area → Find how far y...

Pre During and Post Disaster

Disaster management is a structured approach aimed at reducing risks, responding effectively, and ensuring a swift recovery from disasters. It consists of three main phases: Pre-Disaster (Mitigation & Preparedness), During Disaster (Response), and Post-Disaster (Recovery). These phases involve various strategies, policies, and actions to protect lives, property, and the environment. Below is a breakdown of each phase with key concepts, terminologies, and examples. 1. Pre-Disaster Phase (Mitigation and Preparedness) Mitigation: This phase focuses on reducing the severity of a disaster by minimizing risks and vulnerabilities. It involves structural and non-structural measures. Hazard Identification: Recognizing potential natural and human-made hazards (e.g., earthquakes, floods, industrial accidents). Risk Assessment: Evaluating the probability and consequences of disasters using GIS, remote sensing, and historical data. Vulnerability Analysis: Identifying areas and p...