Skip to main content

Landslide Upslope Downslope Factors

Landslides occur when the driving forces (gravity, water saturation, seismic activity) exceed the resisting forces (cohesion, friction, vegetation cover) on a slope. To understand landslide dynamics, we classify contributing factors into:

  1. Upslope Factors – Conditions on the upper part of the slope that contribute to instability.
  2. Downslope Factors – Conditions at the base that further exacerbate landslides, often by removing support or altering water flow.

1. Upslope Factors

(a) Steep Slope Angle (Gradient Effect)

  • A higher slope gradient increases shear stress, making the slope more susceptible to failure.
  • Angle of Repose: The maximum angle at which a material remains stable; exceeding this angle leads to landslides.
  • Example: The Himalayan region has high landslide risks due to steep slopes and tectonic activity.

(b) Weak Soil or Rock Type

  • Lithology (rock type) determines slope strength.
  • Clay-rich soils (e.g., montmorillonite) expand when wet, reducing stability.
  • Weathered rocks (e.g., shale, phyllite) lose cohesion over time.
  • Example: Western Ghats experience landslides in lateritic soils after monsoon rains.

(c) Vegetation Cover

  • Roots reinforce soil and absorb excess water.
  • Deforestation increases erosion and runoff.
  • Example: Amazon Basin has stable slopes due to dense tree cover, while Haiti suffers from deforestation-induced landslides.

(d) Water Saturation (Pore Water Pressure Effect)

  • Hydrostatic pressure increases soil weight and reduces internal friction.
  • Infiltration capacity varies; sandy soils drain better than clayey soils.
  • Example: Uttarakhand floods (2013) triggered landslides due to excessive rainfall.

(e) Joints and Fissures

  • Geological discontinuities (faults, bedding planes, joints) act as failure planes.
  • Example: The San Andreas Fault in California increases landslide risks due to active tectonics.

(f) Human Disturbances

  • Construction (roads, dams) alters load distribution.
  • Mining induces vibrations and weakens slopes.
  • Example: The Malin landslide (Maharashtra, India, 2014) was worsened by hill cutting for agriculture.

2. Downslope Factors

(a) Erosion at the Base

  • Undercutting by rivers, waves, or glaciers removes slope support.
  • Example: Konkan coast, India experiences coastal landslides due to wave erosion.

(b) Changes in Water Table

  • High groundwater levels increase pore pressure and reduce cohesion.
  • Example: Oso landslide (Washington, USA, 2014) was linked to high water table changes.

(c) Steep Channel Gradients

  • Accelerated water flow scours the base, destabilizing the slope.
  • Example: Teesta River valley, Sikkim has landslide-prone zones due to steep stream gradients.

(d) Presence of Debris

  • Accumulated sediments create barriers, leading to sudden failures.
  • Example: Landslide dams in Nepal Himalayas cause flash floods when breached.

(e) Previous Landslide Activity

  • Remobilization of old debris increases future risks.
  • Example: Darjeeling region experiences recurring landslides due to historical instability.
  • Interplay Between Factors: Upslope and downslope factors often act together.
  • Mitigation Strategies:
    • Upslope: Reforestation, slope drainage, terracing.
    • Downslope: Retaining walls, river training, landslide barriers.
  • GIS-Based Risk Mapping: Combining remote sensing and Digital Elevation Models (DEM) helps in hazard prediction.

Comments

Popular posts from this blog

Geology and Tectonic. Indian Shield

1. Ch (Chattisgarh Basin): Chattisgarh Basin is a geological region in central India known for its sedimentary rock formations. It's important for its mineral resources, including coal and iron ore. 2. CIS (Central Indian Shear Zone): CIS is a tectonic boundary in central India where the Indian Plate interacts with the Eurasian Plate. It's characterized by significant faulting and seismic activity. 3. GR (Godavari Rift): The Godavari Rift is a geological feature associated with the rifting and splitting of the Indian Plate. It's located in the Godavari River basin in southeastern India. 4. M (Madras Block): The Madras Block is a stable continental block in southern India. It's part of the Indian Plate and is not associated with active tectonic processes. 5. Mk (Malanjkhand): Malanjkhand is known for its copper deposits and is one of the largest copper mines in India. 6. MR (Mahanadi Rift): The Mahanadi Rift is a geological feature related to the rifting of the Indian Pl...

Solar Radiation and Remote Sensing

Satellite Remote Sensing Satellite remote sensing is the science of acquiring information about Earth's surface and atmosphere without physical contact , using sensors mounted on satellites. These sensors detect and record electromagnetic radiation (EMR) that is either emitted or reflected from the Earth's surface. Solar Radiation & Earth's Energy Balance Solar Radiation is the primary source of energy for Earth's climate system. It originates from the Sun and travels through space as electromagnetic waves . Incoming Shortwave Solar Radiation (insolation) consists mostly of ultraviolet, visible, and near-infrared wavelengths . When it reaches Earth, it can be: Absorbed by the atmosphere, clouds, or surface Reflected back to space Scattered by atmospheric particles Outgoing Longwave Radiation is the infrared energy emitted by Earth back into space after absorbing solar energy. This process helps maintain Earth's thermal bala...

Neighbourhood Operations

 Neighbourhood Operations in GIS? In GIS and raster data , neighbourhood operations look at a group of nearby pixels (not just one) to understand or change a pixel's value. Think of it like checking what's around a house before deciding what color to paint it! Why "Neighbourhood"? Each pixel has " neighbours " (just like how your house has nearby houses). Neighbourhood operations check these nearby pixels and do some calculation to get a new value. 1. Aggregations (Summarizing Nearby Values) Aggregation means combining values of several pixels into one. We do this to: Find the average of surrounding pixels Find the minimum or maximum value Smooth the map (make it less rough) 🧒🏻 Example: Imagine checking the test scores of 9 students sitting around you and finding the average score . That's aggregation!  2. Filtering Techniques Filtering is used to improve or highlight features in a raster image, just like f...

Morpho-Tectonic Framework of India

The MorphoTectonic Framework of India refers to the combined study of the country's landforms (morphology) and its geological tectonic features. This framework provides insights into how geological forces have shaped India's topography over millions of years. Here's a breakdown of this concept: 1. Morphology: This aspect focuses on the physical features and landforms of India. It includes the study of mountains, plateaus, plains, valleys, rivers, and other surface features. For example, the Himalayas, Western Ghats, IndoGangetic Plains, and Deccan Plateau are prominent morphological features of India. 2. Tectonics: Tectonics deals with the movement and deformation of the Earth's lithosphere (the outermost rigid layer of the Earth). In the case of India, it primarily involves the interactions of the Indian Plate with neighboring tectonic plates. India is situated at the convergence of several major tectonic boundaries:     Collision with the Eurasian Plate: The most sign...

EMR Spectrum Remote Sensing

The Electromagnetic Radiation (EMR) Spectrum is like a set of invisible waves that carry energy. In remote sensing , satellites and sensors use these waves to collect information about the Earth —like forests, water, cities, clouds, temperature, and more. Just like how our eyes can only see visible light (like colors in a rainbow), sensors in remote sensing can "see" many more types of waves that humans can't.  Types of EMR Used in Remote Sensing: Type of Wave Wavelength What It's Used For Example Visible Light 0.4 – 0.7 micrometers To take normal satellite images Google Earth pictures Near-Infrared 0.7 – 1.0 µm To check plant health Green areas, farming Shortwave Infrared (SWIR) 1.0 – 3.0 µm To see moisture in soil and vegetation Drought or wetness studies Thermal Infrared (TIR) 8.0 – 14.0 µm To measure surface temperature Heat from buildings, forest fires Microwaves 1 mm – 1 meter To see through clouds and at night (radar) Flood detection, weather, disaster...