Skip to main content

Landslide Upslope Downslope Factors

Landslides occur when the driving forces (gravity, water saturation, seismic activity) exceed the resisting forces (cohesion, friction, vegetation cover) on a slope. To understand landslide dynamics, we classify contributing factors into:

  1. Upslope Factors – Conditions on the upper part of the slope that contribute to instability.
  2. Downslope Factors – Conditions at the base that further exacerbate landslides, often by removing support or altering water flow.

1. Upslope Factors

(a) Steep Slope Angle (Gradient Effect)

  • A higher slope gradient increases shear stress, making the slope more susceptible to failure.
  • Angle of Repose: The maximum angle at which a material remains stable; exceeding this angle leads to landslides.
  • Example: The Himalayan region has high landslide risks due to steep slopes and tectonic activity.

(b) Weak Soil or Rock Type

  • Lithology (rock type) determines slope strength.
  • Clay-rich soils (e.g., montmorillonite) expand when wet, reducing stability.
  • Weathered rocks (e.g., shale, phyllite) lose cohesion over time.
  • Example: Western Ghats experience landslides in lateritic soils after monsoon rains.

(c) Vegetation Cover

  • Roots reinforce soil and absorb excess water.
  • Deforestation increases erosion and runoff.
  • Example: Amazon Basin has stable slopes due to dense tree cover, while Haiti suffers from deforestation-induced landslides.

(d) Water Saturation (Pore Water Pressure Effect)

  • Hydrostatic pressure increases soil weight and reduces internal friction.
  • Infiltration capacity varies; sandy soils drain better than clayey soils.
  • Example: Uttarakhand floods (2013) triggered landslides due to excessive rainfall.

(e) Joints and Fissures

  • Geological discontinuities (faults, bedding planes, joints) act as failure planes.
  • Example: The San Andreas Fault in California increases landslide risks due to active tectonics.

(f) Human Disturbances

  • Construction (roads, dams) alters load distribution.
  • Mining induces vibrations and weakens slopes.
  • Example: The Malin landslide (Maharashtra, India, 2014) was worsened by hill cutting for agriculture.

2. Downslope Factors

(a) Erosion at the Base

  • Undercutting by rivers, waves, or glaciers removes slope support.
  • Example: Konkan coast, India experiences coastal landslides due to wave erosion.

(b) Changes in Water Table

  • High groundwater levels increase pore pressure and reduce cohesion.
  • Example: Oso landslide (Washington, USA, 2014) was linked to high water table changes.

(c) Steep Channel Gradients

  • Accelerated water flow scours the base, destabilizing the slope.
  • Example: Teesta River valley, Sikkim has landslide-prone zones due to steep stream gradients.

(d) Presence of Debris

  • Accumulated sediments create barriers, leading to sudden failures.
  • Example: Landslide dams in Nepal Himalayas cause flash floods when breached.

(e) Previous Landslide Activity

  • Remobilization of old debris increases future risks.
  • Example: Darjeeling region experiences recurring landslides due to historical instability.
  • Interplay Between Factors: Upslope and downslope factors often act together.
  • Mitigation Strategies:
    • Upslope: Reforestation, slope drainage, terracing.
    • Downslope: Retaining walls, river training, landslide barriers.
  • GIS-Based Risk Mapping: Combining remote sensing and Digital Elevation Models (DEM) helps in hazard prediction.

Comments

Popular posts from this blog

Natural Disasters

A natural disaster is a catastrophic event caused by natural processes of the Earth that results in significant loss of life, property, and environmental resources. It occurs when a hazard (potentially damaging physical event) interacts with a vulnerable population and leads to disruption of normal life . Key terms: Hazard → A potential natural event (e.g., cyclone, earthquake). Disaster → When the hazard causes widespread damage due to vulnerability. Risk → Probability of harmful consequences from interaction of hazard and vulnerability. Vulnerability → Degree to which a community or system is exposed and unable to cope with the hazard. Resilience → Ability of a system or society to recover from the disaster impact. 👉 Example: An earthquake in an uninhabited desert is a hazard , but not a disaster unless people or infrastructure are affected. Types Natural disasters can be classified into geophysical, hydrological, meteorological, clim...

Types of Remote Sensing

Remote Sensing means collecting information about the Earth's surface without touching it , usually using satellites, aircraft, or drones . There are different types of remote sensing based on the energy source and the wavelength region used. 🛰️ 1. Active Remote Sensing 📘 Concept: In active remote sensing , the sensor sends out its own energy (like a signal or pulse) to the Earth's surface. The sensor then records the reflected or backscattered energy that comes back from the surface. ⚙️ Key Terminology: Transmitter: sends energy (like a radar pulse or laser beam). Receiver: detects the energy that bounces back. Backscatter: energy that is reflected back to the sensor. 📊 Examples of Active Sensors: RADAR (Radio Detection and Ranging): Uses microwave signals to detect surface roughness, soil moisture, or ocean waves. LiDAR (Light Detection and Ranging): Uses laser light (near-infrared) to measure elevation, vegetation...

geostationary and sun-synchronous

Orbital characteristics of Remote sensing satellite geostationary and sun-synchronous  Orbits in Remote Sensing Orbit = the path a satellite follows around the Earth. The orbit determines what part of Earth the satellite can see , how often it revisits , and what applications it is good for . Remote sensing satellites mainly use two standard orbits : Geostationary Orbit (GEO) Sun-Synchronous Orbit (SSO)  Geostationary Satellites (GEO) Characteristics Altitude : ~35,786 km above the equator. Period : 24 hours → same as Earth's rotation. Orbit type : Circular, directly above the equator . Appears "stationary" over one fixed point on Earth. Concepts & Terminologies Geosynchronous = orbit period matches Earth's rotation (24h). Geostationary = special type of geosynchronous orbit directly above equator → looks fixed. Continuous coverage : Can monitor the same area all the time. Applications Weather...

India remote sensing

1. Foundational Phase (Early 1970s – Early 1980s) Objective: To explore the potential of space-based observation for national development. 1972: The Space Applications Programme (SAP) was initiated by the Indian Space Research Organisation (ISRO), focusing on applying space technology for societal benefits. 1975: The Department of Space (DoS) was established, providing an institutional base for space applications, including remote sensing. 1977: India began aerial and balloon-borne experiments to study Earth resources and assess how remote sensing data could aid in agriculture, forestry, and hydrology. 1978 (June 7): Bhaskara-I launched by the Soviet Union — India's first experimental Earth Observation satellite . Payloads: TV cameras (for land and ocean surface observation) and a Microwave Radiometer. Significance: Proved that satellite-based Earth observation was feasible for India's needs. 1981 (November 20): Bhaskara-II launche...

Linear Arrays Along-Track Scanners or Pushbroom Scanners

Multispectral Imaging Using Linear Arrays (Along-Track Scanners or Pushbroom Scanners) Multispectral Imaging: As previously defined, this involves capturing images using multiple sensors that are sensitive to different wavelengths of electromagnetic radiation. Linear Array of Detectors (A): This refers to a row of discrete detectors arranged in a straight line. Each detector is responsible for measuring the radiation within a specific wavelength band. Focal Plane (B): This is the plane where the image is formed by the lens system. It is the location where the detectors are placed to capture the focused image. Formed by Lens Systems (C): The lens system is responsible for collecting and focusing the incoming radiation onto the focal plane. It acts like a camera lens, creating a sharp image of the scene. Ground Resolution Cell (D): As previously defined, this is the smallest area on the ground that can be resolved by a remote sensing sensor. In the case of linear array scanne...