Skip to main content

Landslide Upslope Downslope Factors

Landslides occur when the driving forces (gravity, water saturation, seismic activity) exceed the resisting forces (cohesion, friction, vegetation cover) on a slope. To understand landslide dynamics, we classify contributing factors into:

  1. Upslope Factors – Conditions on the upper part of the slope that contribute to instability.
  2. Downslope Factors – Conditions at the base that further exacerbate landslides, often by removing support or altering water flow.

1. Upslope Factors

(a) Steep Slope Angle (Gradient Effect)

  • A higher slope gradient increases shear stress, making the slope more susceptible to failure.
  • Angle of Repose: The maximum angle at which a material remains stable; exceeding this angle leads to landslides.
  • Example: The Himalayan region has high landslide risks due to steep slopes and tectonic activity.

(b) Weak Soil or Rock Type

  • Lithology (rock type) determines slope strength.
  • Clay-rich soils (e.g., montmorillonite) expand when wet, reducing stability.
  • Weathered rocks (e.g., shale, phyllite) lose cohesion over time.
  • Example: Western Ghats experience landslides in lateritic soils after monsoon rains.

(c) Vegetation Cover

  • Roots reinforce soil and absorb excess water.
  • Deforestation increases erosion and runoff.
  • Example: Amazon Basin has stable slopes due to dense tree cover, while Haiti suffers from deforestation-induced landslides.

(d) Water Saturation (Pore Water Pressure Effect)

  • Hydrostatic pressure increases soil weight and reduces internal friction.
  • Infiltration capacity varies; sandy soils drain better than clayey soils.
  • Example: Uttarakhand floods (2013) triggered landslides due to excessive rainfall.

(e) Joints and Fissures

  • Geological discontinuities (faults, bedding planes, joints) act as failure planes.
  • Example: The San Andreas Fault in California increases landslide risks due to active tectonics.

(f) Human Disturbances

  • Construction (roads, dams) alters load distribution.
  • Mining induces vibrations and weakens slopes.
  • Example: The Malin landslide (Maharashtra, India, 2014) was worsened by hill cutting for agriculture.

2. Downslope Factors

(a) Erosion at the Base

  • Undercutting by rivers, waves, or glaciers removes slope support.
  • Example: Konkan coast, India experiences coastal landslides due to wave erosion.

(b) Changes in Water Table

  • High groundwater levels increase pore pressure and reduce cohesion.
  • Example: Oso landslide (Washington, USA, 2014) was linked to high water table changes.

(c) Steep Channel Gradients

  • Accelerated water flow scours the base, destabilizing the slope.
  • Example: Teesta River valley, Sikkim has landslide-prone zones due to steep stream gradients.

(d) Presence of Debris

  • Accumulated sediments create barriers, leading to sudden failures.
  • Example: Landslide dams in Nepal Himalayas cause flash floods when breached.

(e) Previous Landslide Activity

  • Remobilization of old debris increases future risks.
  • Example: Darjeeling region experiences recurring landslides due to historical instability.
  • Interplay Between Factors: Upslope and downslope factors often act together.
  • Mitigation Strategies:
    • Upslope: Reforestation, slope drainage, terracing.
    • Downslope: Retaining walls, river training, landslide barriers.
  • GIS-Based Risk Mapping: Combining remote sensing and Digital Elevation Models (DEM) helps in hazard prediction.

Comments

Popular posts from this blog

Platforms in Remote Sensing

In remote sensing, a platform is the physical structure or vehicle that carries a sensor (camera, scanner, radar, etc.) to observe and collect information about the Earth's surface. Platforms are classified mainly by their altitude and mobility : Ground-Based Platforms Definition : Sensors mounted on the Earth's surface or very close to it. Examples : Tripods, towers, ground vehicles, handheld instruments. Applications : Calibration and validation of satellite data Detailed local studies (e.g., soil properties, vegetation health, air quality) Strength : High spatial detail but limited coverage. Airborne Platforms Definition : Sensors carried by aircraft, balloons, or drones (UAVs). Altitude : A few hundred meters to ~20 km. Examples : Airplanes with multispectral scanners UAVs with high-resolution cameras or LiDAR High-altitude balloons (stratospheric platforms) Applications : Local-to-regional mapping ...

Types of Remote Sensing

Remote Sensing means collecting information about the Earth's surface without touching it , usually using satellites, aircraft, or drones . There are different types of remote sensing based on the energy source and the wavelength region used. 🛰️ 1. Active Remote Sensing 📘 Concept: In active remote sensing , the sensor sends out its own energy (like a signal or pulse) to the Earth's surface. The sensor then records the reflected or backscattered energy that comes back from the surface. ⚙️ Key Terminology: Transmitter: sends energy (like a radar pulse or laser beam). Receiver: detects the energy that bounces back. Backscatter: energy that is reflected back to the sensor. 📊 Examples of Active Sensors: RADAR (Radio Detection and Ranging): Uses microwave signals to detect surface roughness, soil moisture, or ocean waves. LiDAR (Light Detection and Ranging): Uses laser light (near-infrared) to measure elevation, vegetation...

Resolution of Sensors in Remote Sensing

Spatial Resolution 🗺️ Definition : The smallest size of an object on the ground that a sensor can detect. Measured as : The size of a pixel on the ground (in meters). Example : Landsat → 30 m (each pixel = 30 × 30 m on Earth). WorldView-3 → 0.31 m (very detailed, you can see cars). Fact : Higher spatial resolution = finer details, but smaller coverage. Spectral Resolution 🌈 Definition : The ability of a sensor to capture information in different parts (bands) of the electromagnetic spectrum . Measured as : The number and width of spectral bands. Types : Panchromatic (1 broad band, e.g., black & white image). Multispectral (several broad bands, e.g., Landsat with 7–13 bands). Hyperspectral (hundreds of very narrow bands, e.g., AVIRIS). Fact : Higher spectral resolution = better identification of materials (e.g., minerals, vegetation types). Radiometric Resolution 📊 Definition : The ability of a sensor to ...

geostationary and sun-synchronous

Orbital characteristics of Remote sensing satellite geostationary and sun-synchronous  Orbits in Remote Sensing Orbit = the path a satellite follows around the Earth. The orbit determines what part of Earth the satellite can see , how often it revisits , and what applications it is good for . Remote sensing satellites mainly use two standard orbits : Geostationary Orbit (GEO) Sun-Synchronous Orbit (SSO)  Geostationary Satellites (GEO) Characteristics Altitude : ~35,786 km above the equator. Period : 24 hours → same as Earth's rotation. Orbit type : Circular, directly above the equator . Appears "stationary" over one fixed point on Earth. Concepts & Terminologies Geosynchronous = orbit period matches Earth's rotation (24h). Geostationary = special type of geosynchronous orbit directly above equator → looks fixed. Continuous coverage : Can monitor the same area all the time. Applications Weather...

Man-Made Disasters

  A man-made disaster (also called a technological disaster or anthropogenic disaster ) is a catastrophic event caused directly or indirectly by human actions , rather than natural processes. These disasters arise due to negligence, error, industrial activity, conflict, or misuse of technology , and often result in loss of life, property damage, and environmental degradation . Terminology: Anthropogenic = originating from human activity. Technological hazard = hazard caused by failure or misuse of technology or industry. 🔹 Conceptual Understanding Man-made disasters are part of the Disaster Management Cycle , which includes: Prevention – avoiding unsafe practices. Mitigation – reducing disaster impact (e.g., safety regulations). Preparedness – training and planning. Response – emergency actions after the disaster. Recovery – long-term rebuilding and policy correction. These disasters are predictable and preventable through strong...