Skip to main content

Government of Kerala Initiatives for Water Management


Kerala, with its abundant rainfall and network of rivers, faces a dual challenge of water scarcity and excess—seasonal droughts and monsoon floods. The state government has implemented various policies and programs to address these challenges through sustainable water conservation, management, and distribution practices.

Below is a detailed breakdown of the major water management initiatives in Kerala.


1. Jal Jeevan Mission (JJM) – Kerala Implementation

Objective:

  • To provide functional household tap connections (FHTC) to all rural households by 2024.
  • Focuses on source sustainability and community-led water resource management.

Key Features:

  • Water Quality Monitoring & Surveillance: Ensures supply of safe drinking water through real-time monitoring.
  • Decentralized Approach: Implementation through gram panchayats and local self-governments (LSGs).
  • Recharge & Conservation Measures: Rainwater harvesting, groundwater recharge, and watershed development integrated with drinking water projects.

Current Progress:

  • Kerala is among the leading states in India in JJM implementation with a high percentage of rural households connected to piped water.

2. Jalanidhi – Kerala Rural Water Supply and Sanitation Agency (KRWSA)

Objective:

  • Ensuring safe and sustainable drinking water for rural areas through community participation.
  • Supports small-scale decentralized water supply schemes instead of large-scale infrastructure.

Key Features:

  • Community-Owned & Managed Water Supply Schemes: Encourages households to contribute financially and take ownership of maintenance.
  • Integration with Sanitation Measures: Promotes toilet construction and waste management to prevent contamination of water sources.
  • Rainwater Harvesting & Well Recharging: Encourages rural households to use rainwater for drinking and irrigation.

Impact:

  • Implemented in multiple phases, improving water security for rural Kerala.

3. Haritha Keralam Mission – Water Conservation & Rejuvenation

Objective:

  • Focuses on rejuvenation of water bodies, afforestation, and waste management.
  • Works under the "Navakeralam" (New Kerala) mission integrating various departments.

Key Features:

  • Revival of Traditional Water Bodies: Cleaning and restoration of ponds, tanks, lakes, and village wells.
  • Watershed Development: Encourages rainwater harvesting, check dams, and afforestation in highland and midland regions.
  • Wastewater Treatment: Decentralized sewage treatment plants (STPs) are being promoted in urban areas.

Successes:

  • Revived hundreds of traditional ponds, temple tanks, and lakes across Kerala.

4. Operation Anantha – Urban Flood Control in Thiruvananthapuram

Objective:

  • Launched after the 2015 urban floods in Thiruvananthapuram to prevent waterlogging and improve urban drainage.

Key Features:

  • Widening and Restoration of Canals & Drains to ensure free flow of rainwater.
  • Smart Flood Monitoring System using IoT sensors to predict heavy rainfall events.
  • Sewage and Drainage System Upgrades to prevent contamination of stormwater drains.

Impact:

  • Reduced waterlogging and urban flooding in the state capital.

5. Kuttanad Flood Mitigation and Water Management

Objective:

  • To manage floods and salinity intrusion in Kerala's low-lying Kuttanad region, which is below sea level.

Key Features:

  • Construction of Bunds and Sluices: Regulates water flow between backwaters and agricultural fields.
  • Desilting and Dredging of Canals & Lakes to improve drainage efficiency.
  • Sustainable Paddy Cultivation: Encourages alternate wetting and drying (AWD) methods to reduce excessive water usage.

Challenges:

  • Climate change has increased the frequency of floods, requiring more adaptive management strategies.

6. Mazhapolima – Well Recharge Program

Objective:

  • A rainwater harvesting initiative started in Thrissur and later expanded across Kerala.

Key Features:

  • Encourages households to recharge their wells using rooftop rainwater.
  • Provides financial assistance and technical support for well-recharge structures.
  • Aims to combat groundwater depletion in drought-prone areas.

Impact:

  • Improved groundwater levels in over 50,000 households.

7. Kerala State Groundwater Department Initiatives

Objective:

  • To monitor, regulate, and enhance groundwater availability in the state.

Key Features:

  • Real-Time Groundwater Monitoring Stations: Tracks changes in water levels and quality.
  • Artificial Recharge Projects: Encourages check dams, percolation tanks, and borewell recharge pits.
  • Regulation of Groundwater Extraction: Introduced permits and usage monitoring for industries and large-scale users.

8. Bhoomitrasena and Watershed Development Programs

Objective:

  • To promote youth and community participation in environmental and water conservation activities.

Key Features:

  • Bhoomitrasena Clubs (Student Environmental Groups): Conduct awareness campaigns on water conservation and climate change.
  • Integrated Watershed Management Program (IWMP): Supports soil conservation, micro-irrigation, and agroforestry in hilly terrains.

9. River Rejuvenation Programs

Objective:

  • To restore dying rivers like Bharathapuzha, Pamba, Chaliyar, and Achankovil.

Key Features:

  • Desilting and Pollution Control Measures.
  • Afforestation Along Riverbanks.
  • Community-Led Waste Management & Cleanup Drives.

Impact:

  • Significant improvement in river water quality and biodiversity restoration.

10. Kerala Coastal Zone Management – Protecting Coastal Water Resources

Objective:

  • To protect coastal water bodies, prevent sea erosion, and conserve wetlands.

Key Features:

  • Mangrove Restoration & Coastal Afforestation.
  • Sand Dune Stabilization & Artificial Reefs to prevent saltwater intrusion.
  • Sustainable Fisheries & Marine Conservation Initiatives.

Impact:

  • Reduced coastal erosion and improved groundwater recharge in coastal areas.

11. Smart Water Management – IoT & GIS-Based Monitoring

Objective:

  • To improve urban water supply, leak detection, and efficient water distribution.

Key Features:

  • Smart Water Meters & Leak Detection Systems to prevent water wastage.
  • GIS-Based Water Resource Mapping for efficient planning.
  • AI-Based Weather Prediction Models for flood and drought forecasting.

Comments

Popular posts from this blog

Geologic and tectonic framework of the Indian shield

  Major Terms and Regions Explained 1. Indian Shield The Indian Shield refers to the ancient, stable core of the Indian Plate made of hard crystalline rocks. It comprises Archean to Proterozoic rocks that have remained tectonically stable over billions of years. Important Geological Features and Regions ▪️ Ch – Chhattisgarh Basin A sedimentary basin part of the Bastar Craton . Contains rocks of Proterozoic age , mainly sedimentary. Important for understanding the evolution of central India. ▪️ CIS – Central Indian Shear Zone A major tectonic shear zone , separating the Bundelkhand and Bastar cratons . It records intense deformation and metamorphism . Acts as a suture zone , marking ancient tectonic collisions. ▪️ GR – Godavari Rift A rift valley formed due to stretching and thinning of the Earth's crust. Associated with sedimentary basins and hydrocarbon resources . ▪️ M – Madras Block An Archean crustal block in...

Geology and Tectonic. Indian Shield

1. Ch (Chattisgarh Basin): Chattisgarh Basin is a geological region in central India known for its sedimentary rock formations. It's important for its mineral resources, including coal and iron ore. 2. CIS (Central Indian Shear Zone): CIS is a tectonic boundary in central India where the Indian Plate interacts with the Eurasian Plate. It's characterized by significant faulting and seismic activity. 3. GR (Godavari Rift): The Godavari Rift is a geological feature associated with the rifting and splitting of the Indian Plate. It's located in the Godavari River basin in southeastern India. 4. M (Madras Block): The Madras Block is a stable continental block in southern India. It's part of the Indian Plate and is not associated with active tectonic processes. 5. Mk (Malanjkhand): Malanjkhand is known for its copper deposits and is one of the largest copper mines in India. 6. MR (Mahanadi Rift): The Mahanadi Rift is a geological feature related to the rifting of the Indian Pl...

Evaluation and Characteristics of Himalayas

Time Period Event / Process Geological Evidence Key Terms & Concepts Late Precambrian – Palaeozoic (>541 Ma – ~250 Ma) India part of Gondwana , north bordered by Cimmerian Superterranes, separated from Eurasia by Paleo-Tethys Ocean . Pan-African granitic intrusions (~500 Ma), unconformity between Ordovician conglomerates & Cambrian sediments. Gondwana, Paleo-Tethys Ocean, Pan-African orogeny, unconformity, granitic intrusions, Cimmerian Superterranes. Early Carboniferous – Early Permian (~359 – 272 Ma) Rifting between India & Cimmerian Superterranes → Neotethys Ocean formation. Rift-related sediments, passive margin sequences. Rifting, Neotethys Ocean, passive continental margin. Norian (210 Ma) – Callovian (160–155 Ma) Gondwana split into East & West; India part of East Gondwana with Australia & Antarctica. Rift basins, oceanic crust formation. Continental breakup, East Gondwana, West Gondwana, oceanic crust. Early Cretaceous (130–125 Ma) India broke fr...

Seismicity and Earthquakes, Isostasy and Gravity

1. Seismicity and Earthquakes in the Indian Subcontinent Key Concept: Seismicity Definition : The occurrence, frequency, and magnitude of earthquakes in a region. In India, seismicity is high due to active tectonic processes . Plate Tectonics 🌏 Indian Plate : Moves northward at about 5 cm/year. Collision with Eurasian Plate : Causes intense crustal deformation , mountain building (Himalayas), and earthquakes. This is an example of a continental-continental collision zone . Seismic Zones of India Classified into Zone II, III, IV, V (Bureau of Indian Standards, BIS). Zone V = highest hazard (e.g., Himalayas, Northeast India). Zone II = lowest hazard (e.g., parts of peninsular India). Earthquake Hazards ⚠️ Himalayas: prone to large shallow-focus earthquakes due to active thrust faulting. Northeast India: complex subduction and strike-slip faults . Examples: 1897 Shillong Earthquake (Magnitude ~8.1) 1950 Assam–Tib...

Vector geoprocessing - Clipping, Erase, identify, Union & Intersection

Think of your vector data (points, lines, polygons) like shapes drawn on a transparent sheet. Geoprocessing is just cutting, joining, or comparing those shapes to get new shapes or information. 1. Clipping ✂️ Imagine you have a big map and you only want to keep a part of it (like cutting a photo into a smaller rectangle). You use another shape (like the boundary of a district) to "clip" and keep only what is inside. Result: Only the data inside the clipping shape remains. 2. Erase 🚫 Opposite of clipping. You remove (erase) the area of one shape from another shape. Example: You have a city map and want to remove all the park areas from it. 3. Identify 🔍 This checks which features from one layer fall inside (or touch) another layer. Example: Identify all the schools inside a flood zone. 4. Union 🤝 Combines two shapes together and keeps everything from both. Works like stacking two transparent sheets and redrawing t...