Skip to main content

Government of India Initiatives for Water Management

The Government of India has undertaken several initiatives to address the challenges of water management, including water scarcity, groundwater depletion, pollution, and inefficient usage. These initiatives focus on water conservation, sustainable management, and ensuring equitable access to clean water. Below is a detailed explanation of the key initiatives:


1. Jal Shakti Abhiyan (JSA)

  • Launched in 2019, JSA is a water conservation campaign implemented in mission mode.
  • It focuses on five major interventions:
    1. Water conservation and rainwater harvesting
    2. Renovation of traditional and other water bodies/tanks
    3. Rejuvenation of small rivers and watersheds
    4. Intensive afforestation
    5. Water-efficient practices for agriculture
  • Implemented in water-stressed districts with active community participation.
  • Encourages local-level solutions like rooftop rainwater harvesting and check dams.

2. Atal Mission for Rejuvenation and Urban Transformation (AMRUT)

  • Launched in 2015 to improve urban water infrastructure.
  • Objectives:
    • Ensure universal coverage of water supply and sewerage.
    • Promote rainwater harvesting and wastewater reuse.
    • Develop green spaces and parks to improve groundwater recharge.
  • Encourages cities to adopt water-efficient technologies like smart water meters.

3. National Water Mission (NWM)

  • Part of India's National Action Plan on Climate Change (NAPCC).
  • Aims to increase water use efficiency by 20% through better management practices.
  • Key Strategies:
    • Basin-level water planning and integrated river basin management.
    • Assessment of climate change impact on water resources.
    • Encouraging water-neutral and water-positive industries.
  • Promotes traditional water conservation techniques alongside modern technology.

4. Namami Gange Programme

  • Launched in 2014 for the rejuvenation and cleaning of the Ganga River.
  • Aims to control pollution, improve river ecology, and promote sustainable management.
  • Key Components:
    • Construction of sewage treatment plants (STPs) to reduce untreated wastewater discharge.
    • River surface cleaning to remove floating debris.
    • Bio-diversity conservation, afforestation, and wetland protection.
    • Public participation through Ganga Gram (model villages along the river) and awareness campaigns.
  • Extended to cover tributaries of the Ganga, including the Yamuna and Damodar rivers.

5. Pradhan Mantri Krishi Sinchayee Yojana (PMKSY)

  • Launched in 2015 to ensure water security in agriculture.
  • Objectives:
    • Har Khet Ko Pani – Ensuring irrigation for every farm.
    • Per Drop More Crop – Promoting micro-irrigation (drip & sprinkler irrigation) to improve water-use efficiency.
    • Watershed Development – Improving soil moisture retention and groundwater recharge.
  • Encourages participatory irrigation management through Water User Associations (WUAs).

6. Jal Jeevan Mission (JJM)

  • Launched in 2019 to provide tap water connections (Functional Household Tap Connection - FHTC) to all rural households by 2024.
  • Focuses on source sustainability, groundwater recharge, and greywater management.
  • Encourages community participation, local governance, and water budgeting.
  • Uses sensor-based real-time monitoring for efficient water supply tracking.

7. Atal Bhujal Yojana (ABHY)

  • A groundwater management program launched in 2020 with World Bank assistance.
  • Targets groundwater-stressed areas in seven states: Gujarat, Haryana, Karnataka, Madhya Pradesh, Maharashtra, Rajasthan, and Uttar Pradesh.
  • Focuses on community-driven, demand-side water management.
  • Encourages cropping pattern changes, rainwater harvesting, and groundwater recharge.
  • Strengthens data collection and monitoring of groundwater levels.

8. Catch the Rain Campaign

  • Launched under the National Water Mission (NWM) in 2021.
  • Promotes rainwater harvesting and conservation before the monsoon season.
  • Focus areas:
    • Repairing traditional water bodies (lakes, ponds, stepwells).
    • Creating new water conservation structures.
    • Encouraging rooftop rainwater harvesting.
    • Engaging local authorities and communities in water conservation activities.

9. River Basin Management Initiatives

  • Focuses on integrated river basin planning and interlinking of rivers.
  • Interlinking of Rivers (ILR) Project:
    • Aims to transfer surplus water from water-abundant regions to drought-prone areas.
    • Proposed 30 inter-basin water transfer links (14 Himalayan & 16 Peninsular).
    • Major projects include Ken-Betwa River Linking, which benefits Madhya Pradesh and Uttar Pradesh.
  • Promotes scientific river basin modeling and flood management.

10. National Hydrology Project (NHP)

  • Strengthens water resource management through hydrological data and advanced technology.
  • Uses satellite-based monitoring, remote sensing, and GIS tools.
  • Develops a real-time hydrological database for better decision-making.
  • Supports flood forecasting, groundwater assessment, and drought management.

Comments

Popular posts from this blog

Evaluation and Characteristics of Himalayas

Time Period Event / Process Geological Evidence Key Terms & Concepts Late Precambrian – Palaeozoic (>541 Ma – ~250 Ma) India part of Gondwana , north bordered by Cimmerian Superterranes, separated from Eurasia by Paleo-Tethys Ocean . Pan-African granitic intrusions (~500 Ma), unconformity between Ordovician conglomerates & Cambrian sediments. Gondwana, Paleo-Tethys Ocean, Pan-African orogeny, unconformity, granitic intrusions, Cimmerian Superterranes. Early Carboniferous – Early Permian (~359 – 272 Ma) Rifting between India & Cimmerian Superterranes → Neotethys Ocean formation. Rift-related sediments, passive margin sequences. Rifting, Neotethys Ocean, passive continental margin. Norian (210 Ma) – Callovian (160–155 Ma) Gondwana split into East & West; India part of East Gondwana with Australia & Antarctica. Rift basins, oceanic crust formation. Continental breakup, East Gondwana, West Gondwana, oceanic crust. Early Cretaceous (130–125 Ma) India broke fr...

Seismicity and Earthquakes, Isostasy and Gravity

1. Seismicity and Earthquakes in the Indian Subcontinent Key Concept: Seismicity Definition : The occurrence, frequency, and magnitude of earthquakes in a region. In India, seismicity is high due to active tectonic processes . Plate Tectonics 🌏 Indian Plate : Moves northward at about 5 cm/year. Collision with Eurasian Plate : Causes intense crustal deformation , mountain building (Himalayas), and earthquakes. This is an example of a continental-continental collision zone . Seismic Zones of India Classified into Zone II, III, IV, V (Bureau of Indian Standards, BIS). Zone V = highest hazard (e.g., Himalayas, Northeast India). Zone II = lowest hazard (e.g., parts of peninsular India). Earthquake Hazards ⚠️ Himalayas: prone to large shallow-focus earthquakes due to active thrust faulting. Northeast India: complex subduction and strike-slip faults . Examples: 1897 Shillong Earthquake (Magnitude ~8.1) 1950 Assam–Tib...

geostationary and sun-synchronous

Orbital characteristics of Remote sensing satellite geostationary and sun-synchronous  Orbits in Remote Sensing Orbit = the path a satellite follows around the Earth. The orbit determines what part of Earth the satellite can see , how often it revisits , and what applications it is good for . Remote sensing satellites mainly use two standard orbits : Geostationary Orbit (GEO) Sun-Synchronous Orbit (SSO)  Geostationary Satellites (GEO) Characteristics Altitude : ~35,786 km above the equator. Period : 24 hours → same as Earth's rotation. Orbit type : Circular, directly above the equator . Appears "stationary" over one fixed point on Earth. Concepts & Terminologies Geosynchronous = orbit period matches Earth's rotation (24h). Geostationary = special type of geosynchronous orbit directly above equator → looks fixed. Continuous coverage : Can monitor the same area all the time. Applications Weather...

Network data model

GIS, a network data model is used to represent and study things that are connected like a web — for example, roads, rivers, railway tracks, water pipes, or electric lines . It focuses on how things are connected and helps us solve problems like finding the best route, the nearest hospital, or where water will flow. Nodes → Points where things meet or end (e.g., road intersections, railway stations, pumping stations). Edges → Lines connecting the nodes (e.g., roads, pipelines, cables). Topology → The "rules" of connection — which node is linked to which edge. Attributes → Extra details about each part (e.g., road speed limit, pipe size, traffic volume). How It Works 🔍 Make the Network Model Start with a map of lines (roads, pipes, rivers) and mark how they connect. Run Analyses Routing → Find the shortest or fastest path. Closest Facility → Find the nearest hospital, petrol station, etc. Service Area → Find how far y...

Pre During and Post Disaster

Disaster management is a structured approach aimed at reducing risks, responding effectively, and ensuring a swift recovery from disasters. It consists of three main phases: Pre-Disaster (Mitigation & Preparedness), During Disaster (Response), and Post-Disaster (Recovery). These phases involve various strategies, policies, and actions to protect lives, property, and the environment. Below is a breakdown of each phase with key concepts, terminologies, and examples. 1. Pre-Disaster Phase (Mitigation and Preparedness) Mitigation: This phase focuses on reducing the severity of a disaster by minimizing risks and vulnerabilities. It involves structural and non-structural measures. Hazard Identification: Recognizing potential natural and human-made hazards (e.g., earthquakes, floods, industrial accidents). Risk Assessment: Evaluating the probability and consequences of disasters using GIS, remote sensing, and historical data. Vulnerability Analysis: Identifying areas and p...