Skip to main content

Government of India Initiatives for Water Management

The Government of India has undertaken several initiatives to address the challenges of water management, including water scarcity, groundwater depletion, pollution, and inefficient usage. These initiatives focus on water conservation, sustainable management, and ensuring equitable access to clean water. Below is a detailed explanation of the key initiatives:


1. Jal Shakti Abhiyan (JSA)

  • Launched in 2019, JSA is a water conservation campaign implemented in mission mode.
  • It focuses on five major interventions:
    1. Water conservation and rainwater harvesting
    2. Renovation of traditional and other water bodies/tanks
    3. Rejuvenation of small rivers and watersheds
    4. Intensive afforestation
    5. Water-efficient practices for agriculture
  • Implemented in water-stressed districts with active community participation.
  • Encourages local-level solutions like rooftop rainwater harvesting and check dams.

2. Atal Mission for Rejuvenation and Urban Transformation (AMRUT)

  • Launched in 2015 to improve urban water infrastructure.
  • Objectives:
    • Ensure universal coverage of water supply and sewerage.
    • Promote rainwater harvesting and wastewater reuse.
    • Develop green spaces and parks to improve groundwater recharge.
  • Encourages cities to adopt water-efficient technologies like smart water meters.

3. National Water Mission (NWM)

  • Part of India's National Action Plan on Climate Change (NAPCC).
  • Aims to increase water use efficiency by 20% through better management practices.
  • Key Strategies:
    • Basin-level water planning and integrated river basin management.
    • Assessment of climate change impact on water resources.
    • Encouraging water-neutral and water-positive industries.
  • Promotes traditional water conservation techniques alongside modern technology.

4. Namami Gange Programme

  • Launched in 2014 for the rejuvenation and cleaning of the Ganga River.
  • Aims to control pollution, improve river ecology, and promote sustainable management.
  • Key Components:
    • Construction of sewage treatment plants (STPs) to reduce untreated wastewater discharge.
    • River surface cleaning to remove floating debris.
    • Bio-diversity conservation, afforestation, and wetland protection.
    • Public participation through Ganga Gram (model villages along the river) and awareness campaigns.
  • Extended to cover tributaries of the Ganga, including the Yamuna and Damodar rivers.

5. Pradhan Mantri Krishi Sinchayee Yojana (PMKSY)

  • Launched in 2015 to ensure water security in agriculture.
  • Objectives:
    • Har Khet Ko Pani – Ensuring irrigation for every farm.
    • Per Drop More Crop – Promoting micro-irrigation (drip & sprinkler irrigation) to improve water-use efficiency.
    • Watershed Development – Improving soil moisture retention and groundwater recharge.
  • Encourages participatory irrigation management through Water User Associations (WUAs).

6. Jal Jeevan Mission (JJM)

  • Launched in 2019 to provide tap water connections (Functional Household Tap Connection - FHTC) to all rural households by 2024.
  • Focuses on source sustainability, groundwater recharge, and greywater management.
  • Encourages community participation, local governance, and water budgeting.
  • Uses sensor-based real-time monitoring for efficient water supply tracking.

7. Atal Bhujal Yojana (ABHY)

  • A groundwater management program launched in 2020 with World Bank assistance.
  • Targets groundwater-stressed areas in seven states: Gujarat, Haryana, Karnataka, Madhya Pradesh, Maharashtra, Rajasthan, and Uttar Pradesh.
  • Focuses on community-driven, demand-side water management.
  • Encourages cropping pattern changes, rainwater harvesting, and groundwater recharge.
  • Strengthens data collection and monitoring of groundwater levels.

8. Catch the Rain Campaign

  • Launched under the National Water Mission (NWM) in 2021.
  • Promotes rainwater harvesting and conservation before the monsoon season.
  • Focus areas:
    • Repairing traditional water bodies (lakes, ponds, stepwells).
    • Creating new water conservation structures.
    • Encouraging rooftop rainwater harvesting.
    • Engaging local authorities and communities in water conservation activities.

9. River Basin Management Initiatives

  • Focuses on integrated river basin planning and interlinking of rivers.
  • Interlinking of Rivers (ILR) Project:
    • Aims to transfer surplus water from water-abundant regions to drought-prone areas.
    • Proposed 30 inter-basin water transfer links (14 Himalayan & 16 Peninsular).
    • Major projects include Ken-Betwa River Linking, which benefits Madhya Pradesh and Uttar Pradesh.
  • Promotes scientific river basin modeling and flood management.

10. National Hydrology Project (NHP)

  • Strengthens water resource management through hydrological data and advanced technology.
  • Uses satellite-based monitoring, remote sensing, and GIS tools.
  • Develops a real-time hydrological database for better decision-making.
  • Supports flood forecasting, groundwater assessment, and drought management.

Comments

Popular posts from this blog

Natural Disasters

A natural disaster is a catastrophic event caused by natural processes of the Earth that results in significant loss of life, property, and environmental resources. It occurs when a hazard (potentially damaging physical event) interacts with a vulnerable population and leads to disruption of normal life . Key terms: Hazard → A potential natural event (e.g., cyclone, earthquake). Disaster → When the hazard causes widespread damage due to vulnerability. Risk → Probability of harmful consequences from interaction of hazard and vulnerability. Vulnerability → Degree to which a community or system is exposed and unable to cope with the hazard. Resilience → Ability of a system or society to recover from the disaster impact. 👉 Example: An earthquake in an uninhabited desert is a hazard , but not a disaster unless people or infrastructure are affected. Types Natural disasters can be classified into geophysical, hydrological, meteorological, clim...

Types of Remote Sensing

Remote Sensing means collecting information about the Earth's surface without touching it , usually using satellites, aircraft, or drones . There are different types of remote sensing based on the energy source and the wavelength region used. 🛰️ 1. Active Remote Sensing 📘 Concept: In active remote sensing , the sensor sends out its own energy (like a signal or pulse) to the Earth's surface. The sensor then records the reflected or backscattered energy that comes back from the surface. ⚙️ Key Terminology: Transmitter: sends energy (like a radar pulse or laser beam). Receiver: detects the energy that bounces back. Backscatter: energy that is reflected back to the sensor. 📊 Examples of Active Sensors: RADAR (Radio Detection and Ranging): Uses microwave signals to detect surface roughness, soil moisture, or ocean waves. LiDAR (Light Detection and Ranging): Uses laser light (near-infrared) to measure elevation, vegetation...

geostationary and sun-synchronous

Orbital characteristics of Remote sensing satellite geostationary and sun-synchronous  Orbits in Remote Sensing Orbit = the path a satellite follows around the Earth. The orbit determines what part of Earth the satellite can see , how often it revisits , and what applications it is good for . Remote sensing satellites mainly use two standard orbits : Geostationary Orbit (GEO) Sun-Synchronous Orbit (SSO)  Geostationary Satellites (GEO) Characteristics Altitude : ~35,786 km above the equator. Period : 24 hours → same as Earth's rotation. Orbit type : Circular, directly above the equator . Appears "stationary" over one fixed point on Earth. Concepts & Terminologies Geosynchronous = orbit period matches Earth's rotation (24h). Geostationary = special type of geosynchronous orbit directly above equator → looks fixed. Continuous coverage : Can monitor the same area all the time. Applications Weather...

India remote sensing

1. Foundational Phase (Early 1970s – Early 1980s) Objective: To explore the potential of space-based observation for national development. 1972: The Space Applications Programme (SAP) was initiated by the Indian Space Research Organisation (ISRO), focusing on applying space technology for societal benefits. 1975: The Department of Space (DoS) was established, providing an institutional base for space applications, including remote sensing. 1977: India began aerial and balloon-borne experiments to study Earth resources and assess how remote sensing data could aid in agriculture, forestry, and hydrology. 1978 (June 7): Bhaskara-I launched by the Soviet Union — India's first experimental Earth Observation satellite . Payloads: TV cameras (for land and ocean surface observation) and a Microwave Radiometer. Significance: Proved that satellite-based Earth observation was feasible for India's needs. 1981 (November 20): Bhaskara-II launche...

Linear Arrays Along-Track Scanners or Pushbroom Scanners

Multispectral Imaging Using Linear Arrays (Along-Track Scanners or Pushbroom Scanners) Multispectral Imaging: As previously defined, this involves capturing images using multiple sensors that are sensitive to different wavelengths of electromagnetic radiation. Linear Array of Detectors (A): This refers to a row of discrete detectors arranged in a straight line. Each detector is responsible for measuring the radiation within a specific wavelength band. Focal Plane (B): This is the plane where the image is formed by the lens system. It is the location where the detectors are placed to capture the focused image. Formed by Lens Systems (C): The lens system is responsible for collecting and focusing the incoming radiation onto the focal plane. It acts like a camera lens, creating a sharp image of the scene. Ground Resolution Cell (D): As previously defined, this is the smallest area on the ground that can be resolved by a remote sensing sensor. In the case of linear array scanne...