Skip to main content

GIS Topology Errors

GIS topology defines spatial relationships between geometric elements such as points, lines, and polygons. Ensuring correct topology is essential for accurate spatial analysis, as topology errors can lead to incorrect data interpretation and analysis results. Below are common topology errors with explanations and examples:


1. Loopbacks – Self-Intersections Anomaly

Concept:

  • Occurs when a single line or polygon boundary intersects itself, creating an invalid topology.
  • Often results from digitization errors or incorrect snapping settings.

Example:

  • A road network where a single road segment loops back on itself.
  • A river polyline that intersects itself, creating an incorrect junction.

2. Unclosed Polygons/Rings Anomaly

Concept:

  • Happens when a polygon's boundary is not fully closed, leaving a gap or break in the shape.
  • Common in digitization when the start and end points of a polygon do not connect.

Example:

  • A land parcel that is missing a boundary segment, causing errors in area calculations.

3. Internal Polygons with Incorrect Rotation Anomaly

Concept:

  • Some GIS systems use specific vertex orientations (clockwise or counterclockwise) to define polygon interiors.
  • If the rotation is incorrect, internal polygons may not be recognized properly.

Example:

  • An island inside a lake polygon that is misinterpreted due to incorrect rotation.

4. Duplicated Points Anomaly

Concept:

  • Occurs when multiple identical coordinate points exist at the same location unnecessarily.
  • May result from improper data import or redundant digitization.

Example:

  • A survey dataset with multiple identical GPS points for the same location.

5. Kickbacks Anomaly

Concept:

  • A line that suddenly changes direction and returns to nearly the same point, creating unnecessary bends or distortions.
  • Often results from digitization errors or poorly simplified data.

Example:

  • A road network with an unnatural sharp turn and return movement within a small distance.

6. Spikes Anomaly

Concept:

  • Spikes are unwanted protrusions on a polygon boundary or line due to inaccurate vertex placement.
  • Caused by errors in digitization or data generalization.

Example:

  • A building footprint polygon with a sharp, unintended triangular protrusion.

7. Small Areas (Polygon Smaller than a Specified Size) Anomaly

Concept:

  • Very small polygons that are below a defined threshold may indicate unnecessary features or data errors.
  • Often caused by incorrect digitization or unnecessary subdivision of polygons.

Example:

  • A land parcel dataset where tiny, unintended polygons appear due to errors in boundary delineation.

8. Slivers or Gaps Anomaly

Concept:

  • Narrow, unintended gaps between adjacent polygons caused by misalignment.
  • Typically occurs when datasets from different sources or scales are combined.

Example:

  • Land-use polygons that should be adjacent but have thin gaps due to coordinate misalignment.

9. Overlapping Polygons Anomaly

Concept:

  • Occurs when two or more polygons overlap in an area where only one should exist.
  • Can result from duplicate data entry or improper polygon snapping.

Example:

  • Two administrative boundaries overlapping when they should be adjacent.

10. Duplicate Polygons (Polygons with Identical Attributes) Anomaly

Concept:

  • When two or more polygons exist in the same location with the same attribute values.
  • Often results from redundant data import or dataset merging issues.

Example:

  • Two identical parcels of land recorded twice in a land registry database.

11. Short Segments Anomaly

Concept:

  • Line segments that are unnecessarily small and do not contribute to spatial accuracy.
  • Often caused by poor vectorization or excessive vertex density.

Example:

  • A road network with numerous tiny line segments instead of smooth curves.

12. Null Geometry - Table Records with Null Shape Anomaly

Concept:

  • When an attribute table contains records that lack corresponding geometric shapes.
  • Usually occurs due to incorrect data imports or missing spatial information.

Example:

  • A city boundary dataset with a record for a new district but no corresponding polygon.

13. Empty Parts (Geometry Has Multiple Parts and One is Empty) Anomaly

Concept:

  • A multi-part geometry that includes one or more empty components.
  • Typically results from incorrect spatial operations.

Example:

  • A river system represented as a multi-part line feature where one part contains no coordinates.

14. Inconsistent Polygon Boundary Node Anomaly

Concept:

  • Happens when polygons that should share boundaries do not properly align at their nodes.
  • Can cause visual gaps or errors in spatial analysis.

Example:

  • Two adjacent districts in a political boundary dataset that do not match perfectly at their borders

Comments

Popular posts from this blog

Geography of Landslides. Mitigation and Resilience.

A landslide is a geological event in which a mass of rock, earth, or debris moves down a slope under the force of gravity. Landslides can range in size from small to large and can be triggered by natural events such as heavy rainfall, earthquakes, or volcanic activity, or by human activities such as construction or mining. The geography of landslides is affected by a variety of factors that can increase the likelihood of landslides occurring in a particular area. These factors include slope angle and steepness, the type of soil and rock present, the climate and weather patterns of the region, the presence or absence of vegetation, and human activities such as construction, mining, and deforestation. Areas with steep slopes are more prone to landslides because gravity has a stronger effect on loose soil and rock, making it more likely to move downhill. Similarly, areas with loose, sandy soil or weak, fractured rock are more prone to landslides because they are less stable and more easil...

Flood prone regions India

Floods are natural disasters characterized by the overflow of water onto normally dry land. Various factors contribute to floods, including intense rainfall, rapid snowmelt, storm surges from coastal storms, and the failure of dams or levees. The geographical explanation involves understanding the key components of flood-prone regions: 1. Proximity to Water Bodies:    Flood-prone regions are often situated near rivers, lakes, or coastal areas. These locations are more susceptible to flooding as they are in close proximity to large water sources that can overflow during heavy precipitation or storms. 2. Topography:    Low-lying areas with gentle slopes are prone to flooding. Water naturally flows to lower elevations, and flat terrains allow water to accumulate easily. Valleys and floodplains are common flood-prone areas due to their topographical characteristics. 3. Rainfall Patterns:    Regions with high and concentrated rainfall are more likely to experience flooding. Intense and prol...

Geography of Flood. Types. Charector.

The geography of floods refers to the characteristics and patterns of floods in different geographic regions. Floods can occur in various landscapes, such as mountains, plains, coastal areas, and urban environments. The geography of a region plays a significant role in determining the frequency, magnitude, and impacts of floods. Some of the factors that influence the geography of floods include: Topography: The shape and elevation of the land can affect the flow and accumulation of water during a flood. For example, flat terrain can lead to slow-moving and widespread flooding, while steep slopes can result in flash floods and landslides. Climate: Regions with high rainfall or snowmelt can experience more frequent and intense floods, while dry regions may experience flash floods due to sudden, heavy rainfall. Hydrology: The characteristics of a river basin, such as its size, shape, and water flow, can influence the severity of a flood. For example, large river basins with extensive floo...

Landslides. USGS

Landslides. TYPES OF LANDSLIDES The term "landslide" describes a wide variety of processes that result in the downward and outward movement of slope-forming materials including rock, soil, artificial fill, or a combination of these. The materials may move by falling, toppling, sliding, spreading, or flowing. The animated GIF shows a graphic illustration of different types of landslides, with the commonly accepted terminology describing their features. The various types of landslides can be differentiated by the kinds of material involved and the mode of movement.

Prevention and Mitigation

In disaster management, prevention and mitigation are two fundamental strategies aimed at reducing disaster risks and their potential impacts. While both are proactive measures, they differ in scope and approach. 1. Prevention Prevention refers to measures taken to avoid or completely eliminate the occurrence of a disaster. It focuses on long-term strategies to ensure that hazards do not turn into disasters. Hazard Prevention – Actions taken to remove or reduce the presence of hazards (e.g., banning construction in earthquake-prone zones). Structural Prevention – Engineering solutions designed to eliminate hazards (e.g., building dams to prevent floods). Non-Structural Prevention – Policies, land-use regulations, and awareness campaigns to avoid exposure to hazards. Disaster Risk Reduction (DRR) – The systematic approach to identifying, assessing, and reducing risks of disasters. Zero Risk Approach – The idealistic goal of completely eliminating disaster risks, thoug...