Skip to main content

GIS Topology Errors

GIS topology defines spatial relationships between geometric elements such as points, lines, and polygons. Ensuring correct topology is essential for accurate spatial analysis, as topology errors can lead to incorrect data interpretation and analysis results. Below are common topology errors with explanations and examples:


1. Loopbacks – Self-Intersections Anomaly

Concept:

  • Occurs when a single line or polygon boundary intersects itself, creating an invalid topology.
  • Often results from digitization errors or incorrect snapping settings.

Example:

  • A road network where a single road segment loops back on itself.
  • A river polyline that intersects itself, creating an incorrect junction.

2. Unclosed Polygons/Rings Anomaly

Concept:

  • Happens when a polygon's boundary is not fully closed, leaving a gap or break in the shape.
  • Common in digitization when the start and end points of a polygon do not connect.

Example:

  • A land parcel that is missing a boundary segment, causing errors in area calculations.

3. Internal Polygons with Incorrect Rotation Anomaly

Concept:

  • Some GIS systems use specific vertex orientations (clockwise or counterclockwise) to define polygon interiors.
  • If the rotation is incorrect, internal polygons may not be recognized properly.

Example:

  • An island inside a lake polygon that is misinterpreted due to incorrect rotation.

4. Duplicated Points Anomaly

Concept:

  • Occurs when multiple identical coordinate points exist at the same location unnecessarily.
  • May result from improper data import or redundant digitization.

Example:

  • A survey dataset with multiple identical GPS points for the same location.

5. Kickbacks Anomaly

Concept:

  • A line that suddenly changes direction and returns to nearly the same point, creating unnecessary bends or distortions.
  • Often results from digitization errors or poorly simplified data.

Example:

  • A road network with an unnatural sharp turn and return movement within a small distance.

6. Spikes Anomaly

Concept:

  • Spikes are unwanted protrusions on a polygon boundary or line due to inaccurate vertex placement.
  • Caused by errors in digitization or data generalization.

Example:

  • A building footprint polygon with a sharp, unintended triangular protrusion.

7. Small Areas (Polygon Smaller than a Specified Size) Anomaly

Concept:

  • Very small polygons that are below a defined threshold may indicate unnecessary features or data errors.
  • Often caused by incorrect digitization or unnecessary subdivision of polygons.

Example:

  • A land parcel dataset where tiny, unintended polygons appear due to errors in boundary delineation.

8. Slivers or Gaps Anomaly

Concept:

  • Narrow, unintended gaps between adjacent polygons caused by misalignment.
  • Typically occurs when datasets from different sources or scales are combined.

Example:

  • Land-use polygons that should be adjacent but have thin gaps due to coordinate misalignment.

9. Overlapping Polygons Anomaly

Concept:

  • Occurs when two or more polygons overlap in an area where only one should exist.
  • Can result from duplicate data entry or improper polygon snapping.

Example:

  • Two administrative boundaries overlapping when they should be adjacent.

10. Duplicate Polygons (Polygons with Identical Attributes) Anomaly

Concept:

  • When two or more polygons exist in the same location with the same attribute values.
  • Often results from redundant data import or dataset merging issues.

Example:

  • Two identical parcels of land recorded twice in a land registry database.

11. Short Segments Anomaly

Concept:

  • Line segments that are unnecessarily small and do not contribute to spatial accuracy.
  • Often caused by poor vectorization or excessive vertex density.

Example:

  • A road network with numerous tiny line segments instead of smooth curves.

12. Null Geometry - Table Records with Null Shape Anomaly

Concept:

  • When an attribute table contains records that lack corresponding geometric shapes.
  • Usually occurs due to incorrect data imports or missing spatial information.

Example:

  • A city boundary dataset with a record for a new district but no corresponding polygon.

13. Empty Parts (Geometry Has Multiple Parts and One is Empty) Anomaly

Concept:

  • A multi-part geometry that includes one or more empty components.
  • Typically results from incorrect spatial operations.

Example:

  • A river system represented as a multi-part line feature where one part contains no coordinates.

14. Inconsistent Polygon Boundary Node Anomaly

Concept:

  • Happens when polygons that should share boundaries do not properly align at their nodes.
  • Can cause visual gaps or errors in spatial analysis.

Example:

  • Two adjacent districts in a political boundary dataset that do not match perfectly at their borders

Comments

Popular posts from this blog

Platforms in Remote Sensing

In remote sensing, a platform is the physical structure or vehicle that carries a sensor (camera, scanner, radar, etc.) to observe and collect information about the Earth's surface. Platforms are classified mainly by their altitude and mobility : Ground-Based Platforms Definition : Sensors mounted on the Earth's surface or very close to it. Examples : Tripods, towers, ground vehicles, handheld instruments. Applications : Calibration and validation of satellite data Detailed local studies (e.g., soil properties, vegetation health, air quality) Strength : High spatial detail but limited coverage. Airborne Platforms Definition : Sensors carried by aircraft, balloons, or drones (UAVs). Altitude : A few hundred meters to ~20 km. Examples : Airplanes with multispectral scanners UAVs with high-resolution cameras or LiDAR High-altitude balloons (stratospheric platforms) Applications : Local-to-regional mapping ...

geostationary and sun-synchronous

Orbital characteristics of Remote sensing satellite geostationary and sun-synchronous  Orbits in Remote Sensing Orbit = the path a satellite follows around the Earth. The orbit determines what part of Earth the satellite can see , how often it revisits , and what applications it is good for . Remote sensing satellites mainly use two standard orbits : Geostationary Orbit (GEO) Sun-Synchronous Orbit (SSO)  Geostationary Satellites (GEO) Characteristics Altitude : ~35,786 km above the equator. Period : 24 hours → same as Earth's rotation. Orbit type : Circular, directly above the equator . Appears "stationary" over one fixed point on Earth. Concepts & Terminologies Geosynchronous = orbit period matches Earth's rotation (24h). Geostationary = special type of geosynchronous orbit directly above equator → looks fixed. Continuous coverage : Can monitor the same area all the time. Applications Weather...

Resolution of Sensors in Remote Sensing

Spatial Resolution 🗺️ Definition : The smallest size of an object on the ground that a sensor can detect. Measured as : The size of a pixel on the ground (in meters). Example : Landsat → 30 m (each pixel = 30 × 30 m on Earth). WorldView-3 → 0.31 m (very detailed, you can see cars). Fact : Higher spatial resolution = finer details, but smaller coverage. Spectral Resolution 🌈 Definition : The ability of a sensor to capture information in different parts (bands) of the electromagnetic spectrum . Measured as : The number and width of spectral bands. Types : Panchromatic (1 broad band, e.g., black & white image). Multispectral (several broad bands, e.g., Landsat with 7–13 bands). Hyperspectral (hundreds of very narrow bands, e.g., AVIRIS). Fact : Higher spectral resolution = better identification of materials (e.g., minerals, vegetation types). Radiometric Resolution 📊 Definition : The ability of a sensor to ...

Types of Remote Sensing

Remote Sensing means collecting information about the Earth's surface without touching it , usually using satellites, aircraft, or drones . There are different types of remote sensing based on the energy source and the wavelength region used. 🛰️ 1. Active Remote Sensing 📘 Concept: In active remote sensing , the sensor sends out its own energy (like a signal or pulse) to the Earth's surface. The sensor then records the reflected or backscattered energy that comes back from the surface. ⚙️ Key Terminology: Transmitter: sends energy (like a radar pulse or laser beam). Receiver: detects the energy that bounces back. Backscatter: energy that is reflected back to the sensor. 📊 Examples of Active Sensors: RADAR (Radio Detection and Ranging): Uses microwave signals to detect surface roughness, soil moisture, or ocean waves. LiDAR (Light Detection and Ranging): Uses laser light (near-infrared) to measure elevation, vegetation...

Man-Made Disasters

  A man-made disaster (also called a technological disaster or anthropogenic disaster ) is a catastrophic event caused directly or indirectly by human actions , rather than natural processes. These disasters arise due to negligence, error, industrial activity, conflict, or misuse of technology , and often result in loss of life, property damage, and environmental degradation . Terminology: Anthropogenic = originating from human activity. Technological hazard = hazard caused by failure or misuse of technology or industry. 🔹 Conceptual Understanding Man-made disasters are part of the Disaster Management Cycle , which includes: Prevention – avoiding unsafe practices. Mitigation – reducing disaster impact (e.g., safety regulations). Preparedness – training and planning. Response – emergency actions after the disaster. Recovery – long-term rebuilding and policy correction. These disasters are predictable and preventable through strong...