Skip to main content

GIS Topology Errors

GIS topology defines spatial relationships between geometric elements such as points, lines, and polygons. Ensuring correct topology is essential for accurate spatial analysis, as topology errors can lead to incorrect data interpretation and analysis results. Below are common topology errors with explanations and examples:


1. Loopbacks – Self-Intersections Anomaly

Concept:

  • Occurs when a single line or polygon boundary intersects itself, creating an invalid topology.
  • Often results from digitization errors or incorrect snapping settings.

Example:

  • A road network where a single road segment loops back on itself.
  • A river polyline that intersects itself, creating an incorrect junction.

2. Unclosed Polygons/Rings Anomaly

Concept:

  • Happens when a polygon's boundary is not fully closed, leaving a gap or break in the shape.
  • Common in digitization when the start and end points of a polygon do not connect.

Example:

  • A land parcel that is missing a boundary segment, causing errors in area calculations.

3. Internal Polygons with Incorrect Rotation Anomaly

Concept:

  • Some GIS systems use specific vertex orientations (clockwise or counterclockwise) to define polygon interiors.
  • If the rotation is incorrect, internal polygons may not be recognized properly.

Example:

  • An island inside a lake polygon that is misinterpreted due to incorrect rotation.

4. Duplicated Points Anomaly

Concept:

  • Occurs when multiple identical coordinate points exist at the same location unnecessarily.
  • May result from improper data import or redundant digitization.

Example:

  • A survey dataset with multiple identical GPS points for the same location.

5. Kickbacks Anomaly

Concept:

  • A line that suddenly changes direction and returns to nearly the same point, creating unnecessary bends or distortions.
  • Often results from digitization errors or poorly simplified data.

Example:

  • A road network with an unnatural sharp turn and return movement within a small distance.

6. Spikes Anomaly

Concept:

  • Spikes are unwanted protrusions on a polygon boundary or line due to inaccurate vertex placement.
  • Caused by errors in digitization or data generalization.

Example:

  • A building footprint polygon with a sharp, unintended triangular protrusion.

7. Small Areas (Polygon Smaller than a Specified Size) Anomaly

Concept:

  • Very small polygons that are below a defined threshold may indicate unnecessary features or data errors.
  • Often caused by incorrect digitization or unnecessary subdivision of polygons.

Example:

  • A land parcel dataset where tiny, unintended polygons appear due to errors in boundary delineation.

8. Slivers or Gaps Anomaly

Concept:

  • Narrow, unintended gaps between adjacent polygons caused by misalignment.
  • Typically occurs when datasets from different sources or scales are combined.

Example:

  • Land-use polygons that should be adjacent but have thin gaps due to coordinate misalignment.

9. Overlapping Polygons Anomaly

Concept:

  • Occurs when two or more polygons overlap in an area where only one should exist.
  • Can result from duplicate data entry or improper polygon snapping.

Example:

  • Two administrative boundaries overlapping when they should be adjacent.

10. Duplicate Polygons (Polygons with Identical Attributes) Anomaly

Concept:

  • When two or more polygons exist in the same location with the same attribute values.
  • Often results from redundant data import or dataset merging issues.

Example:

  • Two identical parcels of land recorded twice in a land registry database.

11. Short Segments Anomaly

Concept:

  • Line segments that are unnecessarily small and do not contribute to spatial accuracy.
  • Often caused by poor vectorization or excessive vertex density.

Example:

  • A road network with numerous tiny line segments instead of smooth curves.

12. Null Geometry - Table Records with Null Shape Anomaly

Concept:

  • When an attribute table contains records that lack corresponding geometric shapes.
  • Usually occurs due to incorrect data imports or missing spatial information.

Example:

  • A city boundary dataset with a record for a new district but no corresponding polygon.

13. Empty Parts (Geometry Has Multiple Parts and One is Empty) Anomaly

Concept:

  • A multi-part geometry that includes one or more empty components.
  • Typically results from incorrect spatial operations.

Example:

  • A river system represented as a multi-part line feature where one part contains no coordinates.

14. Inconsistent Polygon Boundary Node Anomaly

Concept:

  • Happens when polygons that should share boundaries do not properly align at their nodes.
  • Can cause visual gaps or errors in spatial analysis.

Example:

  • Two adjacent districts in a political boundary dataset that do not match perfectly at their borders

Comments

Popular posts from this blog

Geologic and tectonic framework of the Indian shield

  Major Terms and Regions Explained 1. Indian Shield The Indian Shield refers to the ancient, stable core of the Indian Plate made of hard crystalline rocks. It comprises Archean to Proterozoic rocks that have remained tectonically stable over billions of years. Important Geological Features and Regions ▪️ Ch – Chhattisgarh Basin A sedimentary basin part of the Bastar Craton . Contains rocks of Proterozoic age , mainly sedimentary. Important for understanding the evolution of central India. ▪️ CIS – Central Indian Shear Zone A major tectonic shear zone , separating the Bundelkhand and Bastar cratons . It records intense deformation and metamorphism . Acts as a suture zone , marking ancient tectonic collisions. ▪️ GR – Godavari Rift A rift valley formed due to stretching and thinning of the Earth's crust. Associated with sedimentary basins and hydrocarbon resources . ▪️ M – Madras Block An Archean crustal block in...

Geology and Tectonic. Indian Shield

1. Ch (Chattisgarh Basin): Chattisgarh Basin is a geological region in central India known for its sedimentary rock formations. It's important for its mineral resources, including coal and iron ore. 2. CIS (Central Indian Shear Zone): CIS is a tectonic boundary in central India where the Indian Plate interacts with the Eurasian Plate. It's characterized by significant faulting and seismic activity. 3. GR (Godavari Rift): The Godavari Rift is a geological feature associated with the rifting and splitting of the Indian Plate. It's located in the Godavari River basin in southeastern India. 4. M (Madras Block): The Madras Block is a stable continental block in southern India. It's part of the Indian Plate and is not associated with active tectonic processes. 5. Mk (Malanjkhand): Malanjkhand is known for its copper deposits and is one of the largest copper mines in India. 6. MR (Mahanadi Rift): The Mahanadi Rift is a geological feature related to the rifting of the Indian Pl...

Evaluation and Characteristics of Himalayas

Time Period Event / Process Geological Evidence Key Terms & Concepts Late Precambrian – Palaeozoic (>541 Ma – ~250 Ma) India part of Gondwana , north bordered by Cimmerian Superterranes, separated from Eurasia by Paleo-Tethys Ocean . Pan-African granitic intrusions (~500 Ma), unconformity between Ordovician conglomerates & Cambrian sediments. Gondwana, Paleo-Tethys Ocean, Pan-African orogeny, unconformity, granitic intrusions, Cimmerian Superterranes. Early Carboniferous – Early Permian (~359 – 272 Ma) Rifting between India & Cimmerian Superterranes → Neotethys Ocean formation. Rift-related sediments, passive margin sequences. Rifting, Neotethys Ocean, passive continental margin. Norian (210 Ma) – Callovian (160–155 Ma) Gondwana split into East & West; India part of East Gondwana with Australia & Antarctica. Rift basins, oceanic crust formation. Continental breakup, East Gondwana, West Gondwana, oceanic crust. Early Cretaceous (130–125 Ma) India broke fr...

Seismicity and Earthquakes, Isostasy and Gravity

1. Seismicity and Earthquakes in the Indian Subcontinent Key Concept: Seismicity Definition : The occurrence, frequency, and magnitude of earthquakes in a region. In India, seismicity is high due to active tectonic processes . Plate Tectonics 🌏 Indian Plate : Moves northward at about 5 cm/year. Collision with Eurasian Plate : Causes intense crustal deformation , mountain building (Himalayas), and earthquakes. This is an example of a continental-continental collision zone . Seismic Zones of India Classified into Zone II, III, IV, V (Bureau of Indian Standards, BIS). Zone V = highest hazard (e.g., Himalayas, Northeast India). Zone II = lowest hazard (e.g., parts of peninsular India). Earthquake Hazards ⚠️ Himalayas: prone to large shallow-focus earthquakes due to active thrust faulting. Northeast India: complex subduction and strike-slip faults . Examples: 1897 Shillong Earthquake (Magnitude ~8.1) 1950 Assam–Tib...

Vector geoprocessing - Clipping, Erase, identify, Union & Intersection

Think of your vector data (points, lines, polygons) like shapes drawn on a transparent sheet. Geoprocessing is just cutting, joining, or comparing those shapes to get new shapes or information. 1. Clipping ✂️ Imagine you have a big map and you only want to keep a part of it (like cutting a photo into a smaller rectangle). You use another shape (like the boundary of a district) to "clip" and keep only what is inside. Result: Only the data inside the clipping shape remains. 2. Erase 🚫 Opposite of clipping. You remove (erase) the area of one shape from another shape. Example: You have a city map and want to remove all the park areas from it. 3. Identify 🔍 This checks which features from one layer fall inside (or touch) another layer. Example: Identify all the schools inside a flood zone. 4. Union 🤝 Combines two shapes together and keeps everything from both. Works like stacking two transparent sheets and redrawing t...