Skip to main content

Geography of Tsunami


A tsunami is a series of large ocean waves caused by disturbances such as underwater earthquakes, volcanic eruptions, landslides, or meteorite impacts. These waves travel across ocean basins with immense speed and energy, affecting coastal regions worldwide. Understanding the geography of tsunamis involves analyzing their origin, propagation, impact zones, and mitigation strategies.


1. Causes and Geophysical Processes

A. Tectonic Plate Movements (Seismic Tsunamis)

  • The most common cause of tsunamis is underwater earthquakes occurring along subduction zones, where one tectonic plate is forced under another.
  • When stress is released, the seabed shifts vertically, displacing a large volume of water, generating tsunami waves.
  • Example: The 2004 Indian Ocean Tsunami was triggered by a 9.1-magnitude earthquake off the coast of Sumatra, Indonesia.

B. Volcanic Eruptions (Volcanogenic Tsunamis)

  • Underwater or coastal volcanoes can cause tsunamis when they erupt violently, collapse, or generate pyroclastic flows into the ocean.
  • Example: The 1883 Krakatoa eruption in Indonesia created a tsunami that reached over 40 meters, destroying coastal villages.

2. Propagation and Wave Dynamics

A. Deep-Ocean Characteristics

  • Tsunami waves can travel at speeds of 500-800 km/h in deep water with a small wave height (few centimeters to a meter).
  • Unlike wind-generated waves, tsunami waves have extremely long wavelengths (over 100 km) and low amplitude.

B. Coastal Amplification (Shoaling Effect)

  • As tsunamis approach shallow coastal waters, their speed decreases, but their height increases due to wave compression.
  • The process is called wave shoaling, where the wavelength shortens, and wave height can exceed 30 meters.

C. Wave Types

  1. Drawback Effect: In some tsunamis, the waterline recedes dramatically before the wave strikes.
  2. Multiple Waves: Tsunamis often arrive as a series of waves, with the second or third being the largest.

3. Geographic Impact and Vulnerability

A. High-Risk Regions (Tsunami-Prone Areas)

  • Pacific Ring of Fire: Subduction zones around the Pacific Ocean (Japan, Chile, Alaska, Indonesia).
  • Indian Ocean: Sunda Trench and Andaman-Sumatra region (2004 Tsunami).
  • Mediterranean and Caribbean: Due to tectonic activity and volcanic presence.

B. Coastal Geography and Risk Factors

  • Low-lying areas: Countries like Bangladesh, Maldives, and Florida are highly vulnerable due to their low elevation.
  • Narrow bays and inlets: These can focus tsunami energy, increasing wave height (e.g., Hilo Bay, Hawaii).

4. Tsunami Warning Systems and Mitigation

A. Early Warning Systems

  • Pacific Tsunami Warning Center (PTWC): Monitors seismic and ocean data.
  • Tsunameters (DART buoys): Measure pressure changes in the deep ocean to detect tsunamis.

B. Coastal Defenses and Preparedness

  • Mangrove forests and coral reefs: Reduce wave energy.
  • Sea walls and breakwaters: Help protect coastal cities.
  • Evacuation plans and drills: Countries like Japan have extensive tsunami drills.

Major Tsunamis

  1. 2004 Indian Ocean Tsunami

    • Magnitude: 9.1 earthquake
    • Countries affected: Indonesia, Sri Lanka, India, Thailand
    • Casualties: ~230,000 deaths
  2. 2011 Tōhoku Tsunami (Japan)

    • Magnitude: 9.0 earthquake
    • Wave height: 40 meters
    • Nuclear disaster: Fukushima Daiichi power plant affected
  3. 1960 Chile Tsunami

    • Magnitude: 9.5 earthquake (strongest ever recorded)
    • Waves traveled across the Pacific, reaching Japan and Hawaii.

Comments

Popular posts from this blog

Evaluation and Characteristics of Himalayas

Time Period Event / Process Geological Evidence Key Terms & Concepts Late Precambrian – Palaeozoic (>541 Ma – ~250 Ma) India part of Gondwana , north bordered by Cimmerian Superterranes, separated from Eurasia by Paleo-Tethys Ocean . Pan-African granitic intrusions (~500 Ma), unconformity between Ordovician conglomerates & Cambrian sediments. Gondwana, Paleo-Tethys Ocean, Pan-African orogeny, unconformity, granitic intrusions, Cimmerian Superterranes. Early Carboniferous – Early Permian (~359 – 272 Ma) Rifting between India & Cimmerian Superterranes → Neotethys Ocean formation. Rift-related sediments, passive margin sequences. Rifting, Neotethys Ocean, passive continental margin. Norian (210 Ma) – Callovian (160–155 Ma) Gondwana split into East & West; India part of East Gondwana with Australia & Antarctica. Rift basins, oceanic crust formation. Continental breakup, East Gondwana, West Gondwana, oceanic crust. Early Cretaceous (130–125 Ma) India broke fr...

Seismicity and Earthquakes, Isostasy and Gravity

1. Seismicity and Earthquakes in the Indian Subcontinent Key Concept: Seismicity Definition : The occurrence, frequency, and magnitude of earthquakes in a region. In India, seismicity is high due to active tectonic processes . Plate Tectonics 🌏 Indian Plate : Moves northward at about 5 cm/year. Collision with Eurasian Plate : Causes intense crustal deformation , mountain building (Himalayas), and earthquakes. This is an example of a continental-continental collision zone . Seismic Zones of India Classified into Zone II, III, IV, V (Bureau of Indian Standards, BIS). Zone V = highest hazard (e.g., Himalayas, Northeast India). Zone II = lowest hazard (e.g., parts of peninsular India). Earthquake Hazards ⚠️ Himalayas: prone to large shallow-focus earthquakes due to active thrust faulting. Northeast India: complex subduction and strike-slip faults . Examples: 1897 Shillong Earthquake (Magnitude ~8.1) 1950 Assam–Tib...

geostationary and sun-synchronous

Orbital characteristics of Remote sensing satellite geostationary and sun-synchronous  Orbits in Remote Sensing Orbit = the path a satellite follows around the Earth. The orbit determines what part of Earth the satellite can see , how often it revisits , and what applications it is good for . Remote sensing satellites mainly use two standard orbits : Geostationary Orbit (GEO) Sun-Synchronous Orbit (SSO)  Geostationary Satellites (GEO) Characteristics Altitude : ~35,786 km above the equator. Period : 24 hours → same as Earth's rotation. Orbit type : Circular, directly above the equator . Appears "stationary" over one fixed point on Earth. Concepts & Terminologies Geosynchronous = orbit period matches Earth's rotation (24h). Geostationary = special type of geosynchronous orbit directly above equator → looks fixed. Continuous coverage : Can monitor the same area all the time. Applications Weather...

Network data model

GIS, a network data model is used to represent and study things that are connected like a web — for example, roads, rivers, railway tracks, water pipes, or electric lines . It focuses on how things are connected and helps us solve problems like finding the best route, the nearest hospital, or where water will flow. Nodes → Points where things meet or end (e.g., road intersections, railway stations, pumping stations). Edges → Lines connecting the nodes (e.g., roads, pipelines, cables). Topology → The "rules" of connection — which node is linked to which edge. Attributes → Extra details about each part (e.g., road speed limit, pipe size, traffic volume). How It Works 🔍 Make the Network Model Start with a map of lines (roads, pipes, rivers) and mark how they connect. Run Analyses Routing → Find the shortest or fastest path. Closest Facility → Find the nearest hospital, petrol station, etc. Service Area → Find how far y...

Pre During and Post Disaster

Disaster management is a structured approach aimed at reducing risks, responding effectively, and ensuring a swift recovery from disasters. It consists of three main phases: Pre-Disaster (Mitigation & Preparedness), During Disaster (Response), and Post-Disaster (Recovery). These phases involve various strategies, policies, and actions to protect lives, property, and the environment. Below is a breakdown of each phase with key concepts, terminologies, and examples. 1. Pre-Disaster Phase (Mitigation and Preparedness) Mitigation: This phase focuses on reducing the severity of a disaster by minimizing risks and vulnerabilities. It involves structural and non-structural measures. Hazard Identification: Recognizing potential natural and human-made hazards (e.g., earthquakes, floods, industrial accidents). Risk Assessment: Evaluating the probability and consequences of disasters using GIS, remote sensing, and historical data. Vulnerability Analysis: Identifying areas and p...