Skip to main content

Geography of Tsunami


A tsunami is a series of large ocean waves caused by disturbances such as underwater earthquakes, volcanic eruptions, landslides, or meteorite impacts. These waves travel across ocean basins with immense speed and energy, affecting coastal regions worldwide. Understanding the geography of tsunamis involves analyzing their origin, propagation, impact zones, and mitigation strategies.


1. Causes and Geophysical Processes

A. Tectonic Plate Movements (Seismic Tsunamis)

  • The most common cause of tsunamis is underwater earthquakes occurring along subduction zones, where one tectonic plate is forced under another.
  • When stress is released, the seabed shifts vertically, displacing a large volume of water, generating tsunami waves.
  • Example: The 2004 Indian Ocean Tsunami was triggered by a 9.1-magnitude earthquake off the coast of Sumatra, Indonesia.

B. Volcanic Eruptions (Volcanogenic Tsunamis)

  • Underwater or coastal volcanoes can cause tsunamis when they erupt violently, collapse, or generate pyroclastic flows into the ocean.
  • Example: The 1883 Krakatoa eruption in Indonesia created a tsunami that reached over 40 meters, destroying coastal villages.

2. Propagation and Wave Dynamics

A. Deep-Ocean Characteristics

  • Tsunami waves can travel at speeds of 500-800 km/h in deep water with a small wave height (few centimeters to a meter).
  • Unlike wind-generated waves, tsunami waves have extremely long wavelengths (over 100 km) and low amplitude.

B. Coastal Amplification (Shoaling Effect)

  • As tsunamis approach shallow coastal waters, their speed decreases, but their height increases due to wave compression.
  • The process is called wave shoaling, where the wavelength shortens, and wave height can exceed 30 meters.

C. Wave Types

  1. Drawback Effect: In some tsunamis, the waterline recedes dramatically before the wave strikes.
  2. Multiple Waves: Tsunamis often arrive as a series of waves, with the second or third being the largest.

3. Geographic Impact and Vulnerability

A. High-Risk Regions (Tsunami-Prone Areas)

  • Pacific Ring of Fire: Subduction zones around the Pacific Ocean (Japan, Chile, Alaska, Indonesia).
  • Indian Ocean: Sunda Trench and Andaman-Sumatra region (2004 Tsunami).
  • Mediterranean and Caribbean: Due to tectonic activity and volcanic presence.

B. Coastal Geography and Risk Factors

  • Low-lying areas: Countries like Bangladesh, Maldives, and Florida are highly vulnerable due to their low elevation.
  • Narrow bays and inlets: These can focus tsunami energy, increasing wave height (e.g., Hilo Bay, Hawaii).

4. Tsunami Warning Systems and Mitigation

A. Early Warning Systems

  • Pacific Tsunami Warning Center (PTWC): Monitors seismic and ocean data.
  • Tsunameters (DART buoys): Measure pressure changes in the deep ocean to detect tsunamis.

B. Coastal Defenses and Preparedness

  • Mangrove forests and coral reefs: Reduce wave energy.
  • Sea walls and breakwaters: Help protect coastal cities.
  • Evacuation plans and drills: Countries like Japan have extensive tsunami drills.

Major Tsunamis

  1. 2004 Indian Ocean Tsunami

    • Magnitude: 9.1 earthquake
    • Countries affected: Indonesia, Sri Lanka, India, Thailand
    • Casualties: ~230,000 deaths
  2. 2011 Tōhoku Tsunami (Japan)

    • Magnitude: 9.0 earthquake
    • Wave height: 40 meters
    • Nuclear disaster: Fukushima Daiichi power plant affected
  3. 1960 Chile Tsunami

    • Magnitude: 9.5 earthquake (strongest ever recorded)
    • Waves traveled across the Pacific, reaching Japan and Hawaii.

Comments

Popular posts from this blog

Geologic and tectonic framework of the Indian shield

  Major Terms and Regions Explained 1. Indian Shield The Indian Shield refers to the ancient, stable core of the Indian Plate made of hard crystalline rocks. It comprises Archean to Proterozoic rocks that have remained tectonically stable over billions of years. Important Geological Features and Regions ▪️ Ch – Chhattisgarh Basin A sedimentary basin part of the Bastar Craton . Contains rocks of Proterozoic age , mainly sedimentary. Important for understanding the evolution of central India. ▪️ CIS – Central Indian Shear Zone A major tectonic shear zone , separating the Bundelkhand and Bastar cratons . It records intense deformation and metamorphism . Acts as a suture zone , marking ancient tectonic collisions. ▪️ GR – Godavari Rift A rift valley formed due to stretching and thinning of the Earth's crust. Associated with sedimentary basins and hydrocarbon resources . ▪️ M – Madras Block An Archean crustal block in...

Geology and Tectonic. Indian Shield

1. Ch (Chattisgarh Basin): Chattisgarh Basin is a geological region in central India known for its sedimentary rock formations. It's important for its mineral resources, including coal and iron ore. 2. CIS (Central Indian Shear Zone): CIS is a tectonic boundary in central India where the Indian Plate interacts with the Eurasian Plate. It's characterized by significant faulting and seismic activity. 3. GR (Godavari Rift): The Godavari Rift is a geological feature associated with the rifting and splitting of the Indian Plate. It's located in the Godavari River basin in southeastern India. 4. M (Madras Block): The Madras Block is a stable continental block in southern India. It's part of the Indian Plate and is not associated with active tectonic processes. 5. Mk (Malanjkhand): Malanjkhand is known for its copper deposits and is one of the largest copper mines in India. 6. MR (Mahanadi Rift): The Mahanadi Rift is a geological feature related to the rifting of the Indian Pl...

Evaluation and Characteristics of Himalayas

Time Period Event / Process Geological Evidence Key Terms & Concepts Late Precambrian – Palaeozoic (>541 Ma – ~250 Ma) India part of Gondwana , north bordered by Cimmerian Superterranes, separated from Eurasia by Paleo-Tethys Ocean . Pan-African granitic intrusions (~500 Ma), unconformity between Ordovician conglomerates & Cambrian sediments. Gondwana, Paleo-Tethys Ocean, Pan-African orogeny, unconformity, granitic intrusions, Cimmerian Superterranes. Early Carboniferous – Early Permian (~359 – 272 Ma) Rifting between India & Cimmerian Superterranes → Neotethys Ocean formation. Rift-related sediments, passive margin sequences. Rifting, Neotethys Ocean, passive continental margin. Norian (210 Ma) – Callovian (160–155 Ma) Gondwana split into East & West; India part of East Gondwana with Australia & Antarctica. Rift basins, oceanic crust formation. Continental breakup, East Gondwana, West Gondwana, oceanic crust. Early Cretaceous (130–125 Ma) India broke fr...

Seismicity and Earthquakes, Isostasy and Gravity

1. Seismicity and Earthquakes in the Indian Subcontinent Key Concept: Seismicity Definition : The occurrence, frequency, and magnitude of earthquakes in a region. In India, seismicity is high due to active tectonic processes . Plate Tectonics 🌏 Indian Plate : Moves northward at about 5 cm/year. Collision with Eurasian Plate : Causes intense crustal deformation , mountain building (Himalayas), and earthquakes. This is an example of a continental-continental collision zone . Seismic Zones of India Classified into Zone II, III, IV, V (Bureau of Indian Standards, BIS). Zone V = highest hazard (e.g., Himalayas, Northeast India). Zone II = lowest hazard (e.g., parts of peninsular India). Earthquake Hazards ⚠️ Himalayas: prone to large shallow-focus earthquakes due to active thrust faulting. Northeast India: complex subduction and strike-slip faults . Examples: 1897 Shillong Earthquake (Magnitude ~8.1) 1950 Assam–Tib...

Vector geoprocessing - Clipping, Erase, identify, Union & Intersection

Think of your vector data (points, lines, polygons) like shapes drawn on a transparent sheet. Geoprocessing is just cutting, joining, or comparing those shapes to get new shapes or information. 1. Clipping ✂️ Imagine you have a big map and you only want to keep a part of it (like cutting a photo into a smaller rectangle). You use another shape (like the boundary of a district) to "clip" and keep only what is inside. Result: Only the data inside the clipping shape remains. 2. Erase 🚫 Opposite of clipping. You remove (erase) the area of one shape from another shape. Example: You have a city map and want to remove all the park areas from it. 3. Identify 🔍 This checks which features from one layer fall inside (or touch) another layer. Example: Identify all the schools inside a flood zone. 4. Union 🤝 Combines two shapes together and keeps everything from both. Works like stacking two transparent sheets and redrawing t...