Skip to main content

Geography of Floodplain


A floodplain is a flat or gently sloping land adjacent to a river or stream that periodically experiences flooding. It is formed by the natural processes of sediment deposition, erosion, and hydrological dynamics. Floodplains play a crucial role in ecosystems, agriculture, and human settlement but also pose risks due to flooding.


1. Components of a Floodplain

  • Main Channel: The primary river or stream that flows through the floodplain.
  • Levees: Raised banks along the river, either natural (formed by sediment deposition) or artificial (engineered for flood control).
  • Backswamps: Low-lying areas behind levees that retain water after flooding.
  • Oxbow Lakes: U-shaped water bodies formed when a meander of a river is cut off.
  • Terraces: Elevated areas on the floodplain, often remnants of older flood levels.

2. Processes Shaping Floodplains

a) Erosion and Deposition

  • Lateral Erosion: The sideward movement of a river erodes the banks, widening the floodplain.
  • Sediment Deposition: When floodwaters slow down, they deposit sediments, enriching soil fertility.
  • Avulsion: A sudden change in the river's course, creating a new channel.

b) Hydrological Processes

  • Peak Discharge: The highest flow rate of water during a flood event.
  • Flood Recurrence Interval: The probability of a flood occurring within a specific period (e.g., a "100-year flood" has a 1% chance of occurring annually).
  • Riparian Zones: Vegetated areas along riverbanks that influence water flow and sediment transport.

3. Floodplain Types and Examples

a) Based on Formation

  1. Meandering Floodplains: Characterized by winding river paths with oxbow lakes (e.g., Mississippi River, USA).
  2. Braided Floodplains: Formed by rivers with multiple interwoven channels (e.g., Brahmaputra River, India).
  3. Alluvial Floodplains: Created by sediment deposition from periodic floods (e.g., Indo-Gangetic Plains, South Asia).

b) Based on Hydrology

  1. Seasonal Floodplains: Experience flooding during certain times of the year (e.g., Nile River, Egypt).
  2. Flash Floodplains: Prone to sudden, short-duration floods (e.g., Arizona, USA).
  3. Urban Floodplains: Modified by human activities, leading to altered flood patterns (e.g., Bangkok, Thailand).

4. Floodplain Management and Human Impact

a) Benefits of Floodplains

  • Agricultural Productivity: Rich alluvial soils support farming (e.g., rice cultivation in the Ganges Delta).
  • Biodiversity Hotspots: Provide habitats for flora and fauna (e.g., Amazon floodplains).
  • Water Filtration and Groundwater Recharge: Helps in water purification and replenishment.

b) Flood Risks and Mitigation

  • Structural Measures: Dams, levees, and embankments control flooding (e.g., Three Gorges Dam, China).
  • Non-Structural Measures: Zoning laws, wetland restoration, and flood forecasting reduce risks.
  • Climate Change Impact: Rising sea levels and extreme rainfall events increase floodplain vulnerability.

Comments

Popular posts from this blog

Platforms in Remote Sensing

In remote sensing, a platform is the physical structure or vehicle that carries a sensor (camera, scanner, radar, etc.) to observe and collect information about the Earth's surface. Platforms are classified mainly by their altitude and mobility : Ground-Based Platforms Definition : Sensors mounted on the Earth's surface or very close to it. Examples : Tripods, towers, ground vehicles, handheld instruments. Applications : Calibration and validation of satellite data Detailed local studies (e.g., soil properties, vegetation health, air quality) Strength : High spatial detail but limited coverage. Airborne Platforms Definition : Sensors carried by aircraft, balloons, or drones (UAVs). Altitude : A few hundred meters to ~20 km. Examples : Airplanes with multispectral scanners UAVs with high-resolution cameras or LiDAR High-altitude balloons (stratospheric platforms) Applications : Local-to-regional mapping ...

Types of Remote Sensing

Remote Sensing means collecting information about the Earth's surface without touching it , usually using satellites, aircraft, or drones . There are different types of remote sensing based on the energy source and the wavelength region used. ๐Ÿ›ฐ️ 1. Active Remote Sensing ๐Ÿ“˜ Concept: In active remote sensing , the sensor sends out its own energy (like a signal or pulse) to the Earth's surface. The sensor then records the reflected or backscattered energy that comes back from the surface. ⚙️ Key Terminology: Transmitter: sends energy (like a radar pulse or laser beam). Receiver: detects the energy that bounces back. Backscatter: energy that is reflected back to the sensor. ๐Ÿ“Š Examples of Active Sensors: RADAR (Radio Detection and Ranging): Uses microwave signals to detect surface roughness, soil moisture, or ocean waves. LiDAR (Light Detection and Ranging): Uses laser light (near-infrared) to measure elevation, vegetation...

Resolution of Sensors in Remote Sensing

Spatial Resolution ๐Ÿ—บ️ Definition : The smallest size of an object on the ground that a sensor can detect. Measured as : The size of a pixel on the ground (in meters). Example : Landsat → 30 m (each pixel = 30 × 30 m on Earth). WorldView-3 → 0.31 m (very detailed, you can see cars). Fact : Higher spatial resolution = finer details, but smaller coverage. Spectral Resolution ๐ŸŒˆ Definition : The ability of a sensor to capture information in different parts (bands) of the electromagnetic spectrum . Measured as : The number and width of spectral bands. Types : Panchromatic (1 broad band, e.g., black & white image). Multispectral (several broad bands, e.g., Landsat with 7–13 bands). Hyperspectral (hundreds of very narrow bands, e.g., AVIRIS). Fact : Higher spectral resolution = better identification of materials (e.g., minerals, vegetation types). Radiometric Resolution ๐Ÿ“Š Definition : The ability of a sensor to ...

Optical Sensors in Remote Sensing

1. What Are Optical Sensors? Optical sensors are remote sensing instruments that detect solar radiation reflected or emitted from the Earth's surface in specific portions of the electromagnetic spectrum (EMS) . They mainly work in: Visible region (0.4–0.7 ยตm) Near-Infrared – NIR (0.7–1.3 ยตm) Shortwave Infrared – SWIR (1.3–3.0 ยตm) Thermal Infrared – TIR (8–14 ยตm) — emitted energy, not reflected Optical sensors capture spectral signatures of surface features. Each object reflects/absorbs energy differently, creating a unique spectral response pattern . a) Electromagnetic Spectrum (EMS) The continuous range of wavelengths. Optical sensing uses solar reflective bands and sometimes thermal bands . b) Spectral Signature The unique pattern of reflectance or absorbance of an object across wavelengths. Example: Vegetation reflects strongly in NIR Water absorbs strongly in NIR and SWIR (appears dark) c) Radiance and Reflectance Radi...

geostationary and sun-synchronous

Orbital characteristics of Remote sensing satellite geostationary and sun-synchronous  Orbits in Remote Sensing Orbit = the path a satellite follows around the Earth. The orbit determines what part of Earth the satellite can see , how often it revisits , and what applications it is good for . Remote sensing satellites mainly use two standard orbits : Geostationary Orbit (GEO) Sun-Synchronous Orbit (SSO)  Geostationary Satellites (GEO) Characteristics Altitude : ~35,786 km above the equator. Period : 24 hours → same as Earth's rotation. Orbit type : Circular, directly above the equator . Appears "stationary" over one fixed point on Earth. Concepts & Terminologies Geosynchronous = orbit period matches Earth's rotation (24h). Geostationary = special type of geosynchronous orbit directly above equator → looks fixed. Continuous coverage : Can monitor the same area all the time. Applications Weather...