Skip to main content

Geographic and Projected Coordinate System

In GIS, spatial referencing is essential to accurately locate and analyze geographic features. Two fundamental systems used for spatial referencing are the Geographic Coordinate System (GCS) and the Projected Coordinate System (PCS).


1. Geographic Coordinate System

A Geographic Coordinate System (GCS) is a system that defines locations on the Earth's surface using a three-dimensional spherical surface. It uses latitude and longitude as coordinates.

Components

  1. Datum: A mathematical model representing the Earth's shape.
    • Example: WGS84 (used in GPS), NAD83, and ETRS89.
  2. Prime Meridian: The reference meridian (0Β° longitude), usually Greenwich Meridian.
  3. Units of Measurement: Degrees (Β°), Minutes ('), and Seconds (") or Decimal Degrees (DD).
  4. Latitude & Longitude:
    • Latitude: Measures north-south position (0Β° at the equator, Β±90Β° at poles).
    • Longitude: Measures east-west position (0Β° at the Prime Meridian, Β±180Β° east/west).
  5. Ellipsoid: Defines the Earth's approximate shape.
    • Example: WGS84, Clarke 1866, GRS80.

Example

  • New Delhi, India: (28.6139Β°N, 77.2090Β°E)
  • New York, USA: (40.7128Β°N, 74.0060Β°W)

Advantages of GCS

βœ” Preserves true location on a global scale.
βœ” Used in GPS and global datasets.

Limitations of GCS

✘ Not suitable for distance and area calculations due to Earth's curvature.
✘ Angular units (degrees) make it difficult to measure in linear units like meters.


2. Projected Coordinate System

A Projected Coordinate System (PCS) is a two-dimensional, planar coordinate system that represents the Earth on a flat surface using X (easting) and Y (northing) coordinates. PCS applies mathematical transformations (projections) to convert GCS (spherical coordinates) into a flat map.

Components

  1. Projection: The method used to transform 3D Earth to 2D.
    • Example: Mercator, UTM, Albers, Lambert Conformal Conic.
  2. Datum: The same datum as in GCS but adapted for projection.
  3. Units of Measurement: Typically in meters or feet.
  4. Coordinate Axes:
    • Easting (X-axis): Measures distance eastward.
    • Northing (Y-axis): Measures distance northward.

Types of Map Projections in PCS

  1. Cylindrical Projections (e.g., Mercator Projection)
    • Best for navigation and equatorial regions.
    • Example: Google Maps uses Web Mercator.
  2. Conic Projections (e.g., Albers Equal-Area, Lambert Conformal Conic)
    • Best for mid-latitude areas (e.g., USA, Europe).
    • Used in climate mapping and land-use studies.
  3. Planar (Azimuthal) Projections (e.g., Polar Stereographic)
    • Best for polar regions.
    • Used in Arctic and Antarctic studies.

Example of PCS Coordinates

  • New Delhi, India (UTM Zone 43N): (X: 722,567.89 m, Y: 3,168,234.56 m)

Advantages of PCS

βœ” Maintains distance, area, and shape for regional/local mapping.
βœ” Uses linear measurement units (meters, feet), making calculations easier.

Limitations of PCS

✘ Distortion increases with area size (No projection can preserve all properties at once).
✘ Not globally applicableβ€”designed for specific regions.


Comparison

FeatureGeographic Coordinate SystemProjected Coordinate System
RepresentationSpherical (3D)Planar (2D)
CoordinatesLatitude (Ο†), Longitude (Ξ»)X (Easting), Y (Northing)
UnitsDegrees (Β°)Meters, Feet
Best Use CaseGlobal navigation, GPSLocal/regional mapping
Example SystemsWGS84, NAD83UTM, State Plane

Practical Example in GIS

Scenario: Mapping Flood-Prone Areas in Kerala, India

  1. Step 1: Use GCS (WGS84) for Global Positioning
    • Collect raw satellite data (Sentinel-2, Landsat) in WGS84.
  2. Step 2: Convert to PCS (UTM Zone 43N)
    • Convert coordinates for high-accuracy flood mapping.
    • Use UTM projection to measure affected area in square kilometers.
  • GCS is essential for global-scale mapping and GPS navigation.
  • PCS is crucial for accurate distance and area calculations in local/regional studies.
  • Choosing the right coordinate system depends on the purpose, scale, and accuracy needed.

Comments

Popular posts from this blog

Disaster Management

1. Disaster Risk Analysis β†’ Disaster Risk Reduction β†’ Disaster Management Cycle Disaster Risk Analysis is the first step in managing disasters. It involves assessing potential hazards, identifying vulnerable populations, and estimating possible impacts. Once risks are identified, Disaster Risk Reduction (DRR) strategies come into play. DRR aims to reduce risk and enhance resilience through planning, infrastructure development, and policy enforcement. The Disaster Management Cycle then ensures a structured approach by dividing actions into pre-disaster, during-disaster, and post-disaster phases . Example Connection: Imagine a coastal city prone to cyclones: Risk Analysis identifies low-lying areas and weak infrastructure. Risk Reduction includes building seawalls, enforcing strict building codes, and training residents for emergency situations. The Disaster Management Cycle ensures ongoing preparedness, immediate response during a cyclone, and long-term recovery afterw...

KSHEC Scholarship 2024-25

KSHEC Scholarship 2024-25 Alert! First-Year UG Students Only, Don't Miss This Golden Opportunity! πŸ’‘βœ¨ Are you a first-year undergraduate student studying in a Government or Aided College in Kerala? Do you need financial assistance to continue your education without stress? The Kerala State Higher Education Council (KSHEC) Scholarship is here to support YOU!  This scholarship is a lifeline for deserving students, helping them focus on their studies without worrying about financial burdens. If you meet the criteria, APPLY NOW and take a step towards a brighter future! 🌟 βœ… Simple Online Application – Quick & easy process!  πŸ“Œ Who Can Apply? βœ”οΈ First-year UG students ONLY βœ”οΈ Must be studying in an Arts & Science Government or Aided college in Kerala βœ”οΈ Professional Course students are not eligible  πŸ”Ή Scholarship Amounts Per Year: πŸ“Œ 1st Year FYUGP – β‚Ή12,000 πŸ“Œ 2nd Year FYUGP – β‚Ή18,000 πŸ“Œ 3rd Year FYUGP – β‚Ή24,000 πŸ“Œ 4th Year FYUGP – β‚Ή40,000 πŸ“Œ 5th Year PG – β‚Ή60,000  Great News...

Pre During and Post Disaster

Disaster management is a structured approach aimed at reducing risks, responding effectively, and ensuring a swift recovery from disasters. It consists of three main phases: Pre-Disaster (Mitigation & Preparedness), During Disaster (Response), and Post-Disaster (Recovery). These phases involve various strategies, policies, and actions to protect lives, property, and the environment. Below is a breakdown of each phase with key concepts, terminologies, and examples. 1. Pre-Disaster Phase (Mitigation and Preparedness) Mitigation: This phase focuses on reducing the severity of a disaster by minimizing risks and vulnerabilities. It involves structural and non-structural measures. Hazard Identification: Recognizing potential natural and human-made hazards (e.g., earthquakes, floods, industrial accidents). Risk Assessment: Evaluating the probability and consequences of disasters using GIS, remote sensing, and historical data. Vulnerability Analysis: Identifying areas and p...

Upslope and Downslope Factors in Flooding

Flooding is influenced by both upslope factors and downslope factors within a river basin. Upslope factors refer to the geographical and environmental characteristics of higher elevations that contribute to flood potential downstream. These include steep slopes, large watershed areas, and high rainfall intensity, which accelerate runoff into rivers. Downslope factors involve the characteristics of lower-elevation areas that can exacerbate flooding once water reaches them. These include narrow river channels, low-lying floodplains, poor drainage systems, and human interventions that restrict water flow. Key Factors Affecting Flooding 1. Upslope Factors (Flood Generation and Runoff Acceleration) Large Watershed Area: A bigger catchment area collects more rainfall, increasing water flow into rivers and raising flood risk. Steep Slopes: Rapid runoff from steep terrain leads to sudden surges in river levels, giving less time for infiltration. Soil Type and Vegetation Cover: ...

Role of Geography in Disaster Management

Geography plays a pivotal role in disaster management by facilitating an understanding of the impact of natural disasters, guiding preparedness efforts, and supporting effective response and recovery. By analyzing geographical features, environmental conditions, and historical data, geography empowers disaster management professionals to identify risks, plan for hazards, respond to emergencies, assess damage, and monitor recovery. Geographic Information Systems (GIS) serve as crucial tools, providing critical spatial data for informed decision-making throughout the disaster management cycle. Key Concepts, Terminologies, and Examples 1. Identifying Risk: Concept: Risk identification involves analyzing geographical areas to understand their susceptibility to specific natural disasters. By studying historical events, topography, climate patterns, and environmental factors, disaster management experts can predict which regions are most vulnerable. Terminologies: Hazard Risk: The pr...