Skip to main content

Geographic and Projected Coordinate Systems

Geographic Coordinate System (GCS)

A Geographic Coordinate System (GCS) uses a three-dimensional spherical surface to define locations on Earth. It is based on a datum, an ellipsoid, and angular units (latitude and longitude).

Key Components of GCS:

  • Latitude (ϕ): Measures the north-south position relative to the Equator (0°). It ranges from 90°N to 90°S.
  • Longitude (λ): Measures the east-west position relative to the Prime Meridian (0°). It ranges from 180°E to 180°W.
  • Datum: Defines the reference ellipsoid and origin point.
  • Ellipsoid: An approximation of the Earth's shape.
  • Geoid: A model of Earth's gravitational surface.

Example of a Geographic Coordinate System:

  • WGS 84 (World Geodetic System 1984) – Used in GPS and global mapping applications.

Advantages of GCS:

  • Accurately represents global locations.
  • Commonly used for spatial data storage and sharing.

Disadvantages of GCS:

  • Distances and areas are distorted because the Earth is not a perfect sphere.
  • Not ideal for detailed, local mapping due to distortions in scale.

Projected Coordinate System (PCS)

A Projected Coordinate System (PCS) is a two-dimensional representation of Earth's surface created by mathematically transforming the curved surface of the Earth onto a flat plane.

Key Components of PCS:

  • Projection Type: Defines how the Earth's surface is transformed.
  • X, Y Coordinates: Express positions in meters or feet instead of latitude and longitude.
  • Origin and Datum: Ensures projection accuracy.

Types of Projections in PCS:

  1. Conformal Projection: Preserves shape but distorts area (e.g., Mercator projection).
  2. Equal-Area Projection: Maintains area but distorts shape (e.g., Albers Equal-Area).
  3. Equidistant Projection: Preserves distances along specific lines (e.g., Plate Carrée).
  4. Azimuthal Projection: Maintains direction but distorts distance (e.g., Lambert Azimuthal Equal Area).

Example of a Projected Coordinate System:

  • UTM (Universal Transverse Mercator): Divides the world into 60 zones, each 6° wide.
  • State Plane Coordinate System (SPCS): Used for high-accuracy local mapping in the U.S.

Advantages of PCS:

  • Preserves distances and areas, making it ideal for local and regional mapping.
  • Allows for easier measurements and calculations in GIS.

Disadvantages of PCS:

  • Distortion increases when used for large-scale or global mapping.
  • Different projections may be required for different regions.

Datums in GIS

A datum is a mathematical model that defines the size, shape, and orientation of the Earth for mapping and surveying purposes.

Types of Datums:

A. Geodetic Datums (Horizontal Datums)

Used for positioning locations on the Earth's surface.

  • Global Datums:

    • WGS 84: Used in GPS and most global applications.
    • ITRF (International Terrestrial Reference Frame): Used for scientific measurements.
  • Local Datums:

    • NAD 27 (North American Datum 1927): Based on Clarke 1866 Ellipsoid, used in North America.
    • NAD 83 (North American Datum 1983): Updated to align with modern satellite data.

B. Vertical Datums

Used for measuring elevations and depths.

  • Geoid-Based:

    • EGM96 (Earth Gravitational Model 1996): Used for global height measurements.
    • NAVD88 (North American Vertical Datum 1988): Used in North America.
  • Ellipsoid-Based:

    • WGS 84 Ellipsoid Height: Used in GPS applications.

Example:

  • A point in New York City might have different coordinates in WGS 84 versus NAD 83 due to differences in datum definitions.

Ellipsoid and Geoid in GIS

These are models of Earth's shape used in geodesy and GIS.

Ellipsoid

  • A mathematically defined smooth surface that approximates the shape of the Earth.
  • Used in map projections and coordinate systems.
  • Example: GRS 80 (Geodetic Reference System 1980), WGS 84.

Geoid

  • Represents the actual shape of the Earth based on gravity measurements.
  • More accurate for elevation measurements than ellipsoids.
  • Example: EGM2008 (Earth Gravitational Model 2008).

Key Differences:

FeatureEllipsoidGeoid
DefinitionSmooth mathematical model of EarthRealistic Earth shape based on gravity
PurposeUsed for mapping and coordinate systemsUsed for measuring precise elevations
ExampleWGS 84, GRS 80EGM96, NAVD88

Example in GIS:

  • GPS uses an ellipsoid model (WGS 84) for positioning.
  • Elevation data often references the geoid (EGM96) for height measurements.


  • GCS (Latitude-Longitude) is best for global positioning but introduces distortions.
  • PCS (Projected X-Y coordinates) is ideal for precise local measurements.
  • Datums define how coordinates align with Earth's shape.
  • Ellipsoids approximate Earth's smooth shape, while geoids account for gravitational variations.

Practical Applications in GIS:

  • GPS Navigation: Uses WGS 84 for positioning.
  • Land Surveys: Use local datums like NAD 83 for high-accuracy mapping.
  • Elevation Mapping: Uses geoid-based vertical datums for terrain analysis.
  • Urban Planning: Uses UTM projections for detailed city mapping.

Comments

Popular posts from this blog

Geologic and tectonic framework of the Indian shield

  Major Terms and Regions Explained 1. Indian Shield The Indian Shield refers to the ancient, stable core of the Indian Plate made of hard crystalline rocks. It comprises Archean to Proterozoic rocks that have remained tectonically stable over billions of years. Important Geological Features and Regions ▪️ Ch – Chhattisgarh Basin A sedimentary basin part of the Bastar Craton . Contains rocks of Proterozoic age , mainly sedimentary. Important for understanding the evolution of central India. ▪️ CIS – Central Indian Shear Zone A major tectonic shear zone , separating the Bundelkhand and Bastar cratons . It records intense deformation and metamorphism . Acts as a suture zone , marking ancient tectonic collisions. ▪️ GR – Godavari Rift A rift valley formed due to stretching and thinning of the Earth's crust. Associated with sedimentary basins and hydrocarbon resources . ▪️ M – Madras Block An Archean crustal block in...

Geology and Tectonic. Indian Shield

1. Ch (Chattisgarh Basin): Chattisgarh Basin is a geological region in central India known for its sedimentary rock formations. It's important for its mineral resources, including coal and iron ore. 2. CIS (Central Indian Shear Zone): CIS is a tectonic boundary in central India where the Indian Plate interacts with the Eurasian Plate. It's characterized by significant faulting and seismic activity. 3. GR (Godavari Rift): The Godavari Rift is a geological feature associated with the rifting and splitting of the Indian Plate. It's located in the Godavari River basin in southeastern India. 4. M (Madras Block): The Madras Block is a stable continental block in southern India. It's part of the Indian Plate and is not associated with active tectonic processes. 5. Mk (Malanjkhand): Malanjkhand is known for its copper deposits and is one of the largest copper mines in India. 6. MR (Mahanadi Rift): The Mahanadi Rift is a geological feature related to the rifting of the Indian Pl...

Evaluation and Characteristics of Himalayas

Time Period Event / Process Geological Evidence Key Terms & Concepts Late Precambrian – Palaeozoic (>541 Ma – ~250 Ma) India part of Gondwana , north bordered by Cimmerian Superterranes, separated from Eurasia by Paleo-Tethys Ocean . Pan-African granitic intrusions (~500 Ma), unconformity between Ordovician conglomerates & Cambrian sediments. Gondwana, Paleo-Tethys Ocean, Pan-African orogeny, unconformity, granitic intrusions, Cimmerian Superterranes. Early Carboniferous – Early Permian (~359 – 272 Ma) Rifting between India & Cimmerian Superterranes → Neotethys Ocean formation. Rift-related sediments, passive margin sequences. Rifting, Neotethys Ocean, passive continental margin. Norian (210 Ma) – Callovian (160–155 Ma) Gondwana split into East & West; India part of East Gondwana with Australia & Antarctica. Rift basins, oceanic crust formation. Continental breakup, East Gondwana, West Gondwana, oceanic crust. Early Cretaceous (130–125 Ma) India broke fr...

Seismicity and Earthquakes, Isostasy and Gravity

1. Seismicity and Earthquakes in the Indian Subcontinent Key Concept: Seismicity Definition : The occurrence, frequency, and magnitude of earthquakes in a region. In India, seismicity is high due to active tectonic processes . Plate Tectonics 🌏 Indian Plate : Moves northward at about 5 cm/year. Collision with Eurasian Plate : Causes intense crustal deformation , mountain building (Himalayas), and earthquakes. This is an example of a continental-continental collision zone . Seismic Zones of India Classified into Zone II, III, IV, V (Bureau of Indian Standards, BIS). Zone V = highest hazard (e.g., Himalayas, Northeast India). Zone II = lowest hazard (e.g., parts of peninsular India). Earthquake Hazards ⚠️ Himalayas: prone to large shallow-focus earthquakes due to active thrust faulting. Northeast India: complex subduction and strike-slip faults . Examples: 1897 Shillong Earthquake (Magnitude ~8.1) 1950 Assam–Tib...

Vector geoprocessing - Clipping, Erase, identify, Union & Intersection

Think of your vector data (points, lines, polygons) like shapes drawn on a transparent sheet. Geoprocessing is just cutting, joining, or comparing those shapes to get new shapes or information. 1. Clipping ✂️ Imagine you have a big map and you only want to keep a part of it (like cutting a photo into a smaller rectangle). You use another shape (like the boundary of a district) to "clip" and keep only what is inside. Result: Only the data inside the clipping shape remains. 2. Erase 🚫 Opposite of clipping. You remove (erase) the area of one shape from another shape. Example: You have a city map and want to remove all the park areas from it. 3. Identify 🔍 This checks which features from one layer fall inside (or touch) another layer. Example: Identify all the schools inside a flood zone. 4. Union 🤝 Combines two shapes together and keeps everything from both. Works like stacking two transparent sheets and redrawing t...