Skip to main content

Geographic and Projected Coordinate Systems

Geographic Coordinate System (GCS)

A Geographic Coordinate System (GCS) uses a three-dimensional spherical surface to define locations on Earth. It is based on a datum, an ellipsoid, and angular units (latitude and longitude).

Key Components of GCS:

  • Latitude (Ï•): Measures the north-south position relative to the Equator (0°). It ranges from 90°N to 90°S.
  • Longitude (λ): Measures the east-west position relative to the Prime Meridian (0°). It ranges from 180°E to 180°W.
  • Datum: Defines the reference ellipsoid and origin point.
  • Ellipsoid: An approximation of the Earth's shape.
  • Geoid: A model of Earth's gravitational surface.

Example of a Geographic Coordinate System:

  • WGS 84 (World Geodetic System 1984) – Used in GPS and global mapping applications.

Advantages of GCS:

  • Accurately represents global locations.
  • Commonly used for spatial data storage and sharing.

Disadvantages of GCS:

  • Distances and areas are distorted because the Earth is not a perfect sphere.
  • Not ideal for detailed, local mapping due to distortions in scale.

Projected Coordinate System (PCS)

A Projected Coordinate System (PCS) is a two-dimensional representation of Earth's surface created by mathematically transforming the curved surface of the Earth onto a flat plane.

Key Components of PCS:

  • Projection Type: Defines how the Earth's surface is transformed.
  • X, Y Coordinates: Express positions in meters or feet instead of latitude and longitude.
  • Origin and Datum: Ensures projection accuracy.

Types of Projections in PCS:

  1. Conformal Projection: Preserves shape but distorts area (e.g., Mercator projection).
  2. Equal-Area Projection: Maintains area but distorts shape (e.g., Albers Equal-Area).
  3. Equidistant Projection: Preserves distances along specific lines (e.g., Plate Carrée).
  4. Azimuthal Projection: Maintains direction but distorts distance (e.g., Lambert Azimuthal Equal Area).

Example of a Projected Coordinate System:

  • UTM (Universal Transverse Mercator): Divides the world into 60 zones, each 6° wide.
  • State Plane Coordinate System (SPCS): Used for high-accuracy local mapping in the U.S.

Advantages of PCS:

  • Preserves distances and areas, making it ideal for local and regional mapping.
  • Allows for easier measurements and calculations in GIS.

Disadvantages of PCS:

  • Distortion increases when used for large-scale or global mapping.
  • Different projections may be required for different regions.

Datums in GIS

A datum is a mathematical model that defines the size, shape, and orientation of the Earth for mapping and surveying purposes.

Types of Datums:

A. Geodetic Datums (Horizontal Datums)

Used for positioning locations on the Earth's surface.

  • Global Datums:

    • WGS 84: Used in GPS and most global applications.
    • ITRF (International Terrestrial Reference Frame): Used for scientific measurements.
  • Local Datums:

    • NAD 27 (North American Datum 1927): Based on Clarke 1866 Ellipsoid, used in North America.
    • NAD 83 (North American Datum 1983): Updated to align with modern satellite data.

B. Vertical Datums

Used for measuring elevations and depths.

  • Geoid-Based:

    • EGM96 (Earth Gravitational Model 1996): Used for global height measurements.
    • NAVD88 (North American Vertical Datum 1988): Used in North America.
  • Ellipsoid-Based:

    • WGS 84 Ellipsoid Height: Used in GPS applications.

Example:

  • A point in New York City might have different coordinates in WGS 84 versus NAD 83 due to differences in datum definitions.

Ellipsoid and Geoid in GIS

These are models of Earth's shape used in geodesy and GIS.

Ellipsoid

  • A mathematically defined smooth surface that approximates the shape of the Earth.
  • Used in map projections and coordinate systems.
  • Example: GRS 80 (Geodetic Reference System 1980), WGS 84.

Geoid

  • Represents the actual shape of the Earth based on gravity measurements.
  • More accurate for elevation measurements than ellipsoids.
  • Example: EGM2008 (Earth Gravitational Model 2008).

Key Differences:

FeatureEllipsoidGeoid
DefinitionSmooth mathematical model of EarthRealistic Earth shape based on gravity
PurposeUsed for mapping and coordinate systemsUsed for measuring precise elevations
ExampleWGS 84, GRS 80EGM96, NAVD88

Example in GIS:

  • GPS uses an ellipsoid model (WGS 84) for positioning.
  • Elevation data often references the geoid (EGM96) for height measurements.


  • GCS (Latitude-Longitude) is best for global positioning but introduces distortions.
  • PCS (Projected X-Y coordinates) is ideal for precise local measurements.
  • Datums define how coordinates align with Earth's shape.
  • Ellipsoids approximate Earth's smooth shape, while geoids account for gravitational variations.

Practical Applications in GIS:

  • GPS Navigation: Uses WGS 84 for positioning.
  • Land Surveys: Use local datums like NAD 83 for high-accuracy mapping.
  • Elevation Mapping: Uses geoid-based vertical datums for terrain analysis.
  • Urban Planning: Uses UTM projections for detailed city mapping.

Comments

Popular posts from this blog

Natural Disasters

A natural disaster is a catastrophic event caused by natural processes of the Earth that results in significant loss of life, property, and environmental resources. It occurs when a hazard (potentially damaging physical event) interacts with a vulnerable population and leads to disruption of normal life . Key terms: Hazard → A potential natural event (e.g., cyclone, earthquake). Disaster → When the hazard causes widespread damage due to vulnerability. Risk → Probability of harmful consequences from interaction of hazard and vulnerability. Vulnerability → Degree to which a community or system is exposed and unable to cope with the hazard. Resilience → Ability of a system or society to recover from the disaster impact. 👉 Example: An earthquake in an uninhabited desert is a hazard , but not a disaster unless people or infrastructure are affected. Types Natural disasters can be classified into geophysical, hydrological, meteorological, clim...

Types of Remote Sensing

Remote Sensing means collecting information about the Earth's surface without touching it , usually using satellites, aircraft, or drones . There are different types of remote sensing based on the energy source and the wavelength region used. 🛰️ 1. Active Remote Sensing 📘 Concept: In active remote sensing , the sensor sends out its own energy (like a signal or pulse) to the Earth's surface. The sensor then records the reflected or backscattered energy that comes back from the surface. ⚙️ Key Terminology: Transmitter: sends energy (like a radar pulse or laser beam). Receiver: detects the energy that bounces back. Backscatter: energy that is reflected back to the sensor. 📊 Examples of Active Sensors: RADAR (Radio Detection and Ranging): Uses microwave signals to detect surface roughness, soil moisture, or ocean waves. LiDAR (Light Detection and Ranging): Uses laser light (near-infrared) to measure elevation, vegetation...

geostationary and sun-synchronous

Orbital characteristics of Remote sensing satellite geostationary and sun-synchronous  Orbits in Remote Sensing Orbit = the path a satellite follows around the Earth. The orbit determines what part of Earth the satellite can see , how often it revisits , and what applications it is good for . Remote sensing satellites mainly use two standard orbits : Geostationary Orbit (GEO) Sun-Synchronous Orbit (SSO)  Geostationary Satellites (GEO) Characteristics Altitude : ~35,786 km above the equator. Period : 24 hours → same as Earth's rotation. Orbit type : Circular, directly above the equator . Appears "stationary" over one fixed point on Earth. Concepts & Terminologies Geosynchronous = orbit period matches Earth's rotation (24h). Geostationary = special type of geosynchronous orbit directly above equator → looks fixed. Continuous coverage : Can monitor the same area all the time. Applications Weather...

Linear Arrays Along-Track Scanners or Pushbroom Scanners

Multispectral Imaging Using Linear Arrays (Along-Track Scanners or Pushbroom Scanners) Multispectral Imaging: As previously defined, this involves capturing images using multiple sensors that are sensitive to different wavelengths of electromagnetic radiation. Linear Array of Detectors (A): This refers to a row of discrete detectors arranged in a straight line. Each detector is responsible for measuring the radiation within a specific wavelength band. Focal Plane (B): This is the plane where the image is formed by the lens system. It is the location where the detectors are placed to capture the focused image. Formed by Lens Systems (C): The lens system is responsible for collecting and focusing the incoming radiation onto the focal plane. It acts like a camera lens, creating a sharp image of the scene. Ground Resolution Cell (D): As previously defined, this is the smallest area on the ground that can be resolved by a remote sensing sensor. In the case of linear array scanne...

India remote sensing

1. Foundational Phase (Early 1970s – Early 1980s) Objective: To explore the potential of space-based observation for national development. 1972: The Space Applications Programme (SAP) was initiated by the Indian Space Research Organisation (ISRO), focusing on applying space technology for societal benefits. 1975: The Department of Space (DoS) was established, providing an institutional base for space applications, including remote sensing. 1977: India began aerial and balloon-borne experiments to study Earth resources and assess how remote sensing data could aid in agriculture, forestry, and hydrology. 1978 (June 7): Bhaskara-I launched by the Soviet Union — India's first experimental Earth Observation satellite . Payloads: TV cameras (for land and ocean surface observation) and a Microwave Radiometer. Significance: Proved that satellite-based Earth observation was feasible for India's needs. 1981 (November 20): Bhaskara-II launche...