Skip to main content

Ellipsoid and Geoid


In GIS and geodesy, the ellipsoid and geoid are fundamental models used to approximate the shape of the Earth. They serve as reference surfaces for geographic coordinate systems, positioning, and elevation measurements.


1. Ellipsoid (Spheroid)

An ellipsoid (or spheroid) is a mathematically defined smooth surface that approximates the Earth's shape. It is formed by rotating an ellipse around its minor axis, making the Earth slightly flattened at the poles and bulging at the equator.

  • Semi-Major Axis (a): The longest radius, measured along the equatorial plane.
  • Semi-Minor Axis (b): The shortest radius, measured from the center to the poles.
  • Flattening (f): The measure of how much the ellipsoid is compressed at the poles. Calculated as: f=a−baf = \frac{a - b}{a}
  • Reference Ellipsoid: A specific mathematical model used in geodetic calculations.

Examples of Ellipsoids

  1. WGS84 (World Geodetic System 1984) – Used globally, including for GPS.
  2. GRS80 (Geodetic Reference System 1980) – Used in North America.
  3. Clarke 1866 – Older model used in North American mapping.

Practical Use Cases

  • GPS and Google Maps use the WGS84 ellipsoid for positioning.
  • GIS software relies on ellipsoidal coordinates to ensure accurate mapping.

2. Geoid

A geoid is a model of the Earth's shape based on gravity measurements. It represents the mean sea level (MSL) extended under landmasses, showing where gravity is constant. Unlike the smooth ellipsoid, the geoid has an irregular shape due to variations in Earth's gravity.

  • Geoidal Height (N): The difference between the geoid and the reference ellipsoid at any location. N=h−HN = h - H Where:
    • h = Ellipsoidal height (from GPS)
    • H = Orthometric height (real elevation above the geoid)
    • N = Geoid undulation (difference between ellipsoid and geoid)

Examples of Geoid Models

  1. EGM96 (Earth Gravitational Model 1996) – Used globally for precise height measurements.
  2. EGM2008 – A more refined version for better accuracy.
  3. NAVD88 (North American Vertical Datum 1988) – Used in the United States for elevation data.

Practical Use Cases

  • Flood risk mapping requires geoid-based elevations (orthometric heights).
  • Satellite altimetry uses geoid models to measure sea level changes.
  • Surveying and engineering projects use geoid corrections for precise elevation data.

3. Comparison

FeatureEllipsoidGeoid
DefinitionA mathematically perfect surface approximating Earth's shape.A physical model based on Earth's gravity field.
Surface TypeSmooth and regular.Irregular, follows mean sea level.
Used ForDefining latitude, longitude, and ellipsoidal heights.Defining mean sea level and orthometric heights.
Reference ModelsWGS84, GRS80, Clarke 1866.EGM96, EGM2008, NAVD88.
Key ApplicationGPS navigation, cartography.Elevation modeling, sea level studies.

4. Importance in GIS 

  1. Accurate Positioning: GPS provides ellipsoidal height, but real-world applications require geoid-based heights.
  2. Elevation Corrections: Engineers and surveyors use geoid models to adjust GPS height data.
  3. Map Projections: Selecting the right reference ellipsoid ensures accurate geographic data representation.
  • The ellipsoid is a smooth, mathematical model used for latitude/longitude measurements.
  • The geoid is a gravity-based, irregular surface that represents mean sea level.
  • GIS applications often convert ellipsoidal heights (from GPS) to orthometric heights (using geoid models) for real-world accuracy.

Comments

Popular posts from this blog

Geology and Tectonic. Indian Shield

1. Ch (Chattisgarh Basin): Chattisgarh Basin is a geological region in central India known for its sedimentary rock formations. It's important for its mineral resources, including coal and iron ore. 2. CIS (Central Indian Shear Zone): CIS is a tectonic boundary in central India where the Indian Plate interacts with the Eurasian Plate. It's characterized by significant faulting and seismic activity. 3. GR (Godavari Rift): The Godavari Rift is a geological feature associated with the rifting and splitting of the Indian Plate. It's located in the Godavari River basin in southeastern India. 4. M (Madras Block): The Madras Block is a stable continental block in southern India. It's part of the Indian Plate and is not associated with active tectonic processes. 5. Mk (Malanjkhand): Malanjkhand is known for its copper deposits and is one of the largest copper mines in India. 6. MR (Mahanadi Rift): The Mahanadi Rift is a geological feature related to the rifting of the Indian Pl...

Solar Radiation and Remote Sensing

Satellite Remote Sensing Satellite remote sensing is the science of acquiring information about Earth's surface and atmosphere without physical contact , using sensors mounted on satellites. These sensors detect and record electromagnetic radiation (EMR) that is either emitted or reflected from the Earth's surface. Solar Radiation & Earth's Energy Balance Solar Radiation is the primary source of energy for Earth's climate system. It originates from the Sun and travels through space as electromagnetic waves . Incoming Shortwave Solar Radiation (insolation) consists mostly of ultraviolet, visible, and near-infrared wavelengths . When it reaches Earth, it can be: Absorbed by the atmosphere, clouds, or surface Reflected back to space Scattered by atmospheric particles Outgoing Longwave Radiation is the infrared energy emitted by Earth back into space after absorbing solar energy. This process helps maintain Earth's thermal bala...

Neighbourhood Operations

 Neighbourhood Operations in GIS? In GIS and raster data , neighbourhood operations look at a group of nearby pixels (not just one) to understand or change a pixel's value. Think of it like checking what's around a house before deciding what color to paint it! Why "Neighbourhood"? Each pixel has " neighbours " (just like how your house has nearby houses). Neighbourhood operations check these nearby pixels and do some calculation to get a new value. 1. Aggregations (Summarizing Nearby Values) Aggregation means combining values of several pixels into one. We do this to: Find the average of surrounding pixels Find the minimum or maximum value Smooth the map (make it less rough) 🧒🏻 Example: Imagine checking the test scores of 9 students sitting around you and finding the average score . That's aggregation!  2. Filtering Techniques Filtering is used to improve or highlight features in a raster image, just like f...

Morpho-Tectonic Framework of India

The MorphoTectonic Framework of India refers to the combined study of the country's landforms (morphology) and its geological tectonic features. This framework provides insights into how geological forces have shaped India's topography over millions of years. Here's a breakdown of this concept: 1. Morphology: This aspect focuses on the physical features and landforms of India. It includes the study of mountains, plateaus, plains, valleys, rivers, and other surface features. For example, the Himalayas, Western Ghats, IndoGangetic Plains, and Deccan Plateau are prominent morphological features of India. 2. Tectonics: Tectonics deals with the movement and deformation of the Earth's lithosphere (the outermost rigid layer of the Earth). In the case of India, it primarily involves the interactions of the Indian Plate with neighboring tectonic plates. India is situated at the convergence of several major tectonic boundaries:     Collision with the Eurasian Plate: The most sign...

EMR Spectrum Remote Sensing

The Electromagnetic Radiation (EMR) Spectrum is like a set of invisible waves that carry energy. In remote sensing , satellites and sensors use these waves to collect information about the Earth —like forests, water, cities, clouds, temperature, and more. Just like how our eyes can only see visible light (like colors in a rainbow), sensors in remote sensing can "see" many more types of waves that humans can't.  Types of EMR Used in Remote Sensing: Type of Wave Wavelength What It's Used For Example Visible Light 0.4 – 0.7 micrometers To take normal satellite images Google Earth pictures Near-Infrared 0.7 – 1.0 µm To check plant health Green areas, farming Shortwave Infrared (SWIR) 1.0 – 3.0 µm To see moisture in soil and vegetation Drought or wetness studies Thermal Infrared (TIR) 8.0 – 14.0 µm To measure surface temperature Heat from buildings, forest fires Microwaves 1 mm – 1 meter To see through clouds and at night (radar) Flood detection, weather, disaster...