Skip to main content

Datums Geodetic Vertical Global Local

A datum is a mathematical model that defines how the Earth's shape is represented for mapping and spatial data analysis. It serves as the foundation for geographic coordinate systems (GCS) and projected coordinate systems (PCS). Datums are crucial for accurate positioning, navigation, and geographic measurements.

1. Types of Datums in GIS

Datums are categorized into:

  1. Geodetic Datums (Horizontal Datums) – Define positions on the Earth's surface using latitude and longitude.
  2. Vertical Datums – Define elevations or depths relative to a reference surface (e.g., sea level).
  3. Global vs. Local Datums – Distinguish between datums that are globally applicable versus those optimized for a specific region.

2. Geodetic Datum (Horizontal Datum)

A geodetic datum defines a reference system for measuring positions (latitude, longitude) on the Earth's surface. It accounts for the Earth's ellipsoidal shape and is crucial for GPS and mapping applications.

Key Components of a Geodetic Datum

  1. Ellipsoid (Spheroid): An idealized mathematical model approximating the Earth's shape.
    • Example: WGS84, GRS80, Clarke 1866.
  2. Reference Point: A fixed point from which measurements originate.
  3. Coordinate System: Specifies how latitude and longitude are measured.

Examples of Geodetic Datums

  • WGS84 (World Geodetic System 1984) → Used by GPS and Google Maps.
  • NAD83 (North American Datum 1983) → Used in North America.
  • ETRS89 (European Terrestrial Reference System 1989) → Used in Europe.

Practical Use Case

  • When using GPS, your device references WGS84, ensuring global consistency in navigation.
  • A local GIS project in India may use Everest 1830 for better accuracy.

3. Vertical Datum

A vertical datum defines the reference surface for measuring elevation or depth. It is essential for terrain analysis, flood modeling, and coastal studies.

Types of Vertical Datums

  1. Tidal Datum: Based on sea level (e.g., Mean Sea Level - MSL).
  2. Geoid-Based Datum: Uses the geoid, a model of the Earth's gravity field (e.g., EGM96, NAVD88).
  3. Ellipsoidal Datum: Uses the reference ellipsoid for height measurements (e.g., WGS84 ellipsoidal height).

Examples of Vertical Datums

  • EGM96 (Earth Gravitational Model 1996) → Used globally.
  • NAVD88 (North American Vertical Datum 1988) → Used in the USA.
  • MSL (Mean Sea Level) → Used as a general reference for elevations.

Practical Use Case

  • Elevation data from NASA's SRTM (Shuttle Radar Topography Mission) is referenced to the EGM96 geoid.
  • Coastal flood risk mapping relies on Mean Sea Level (MSL) as a reference.

4. Global vs. Local Datums

Global Datums

A global datum provides a reference system that fits the entire Earth. It is optimized for worldwide accuracy but may introduce small errors at a local scale.

  • Example: WGS84 (World Geodetic System 1984) – Used for GPS globally.

Local Datums

A local datum is optimized for a specific country or region, providing higher accuracy within that area but not globally.

  • Example: Everest 1830 – Used in India.

Comparison Table: Global vs. Local Datums

FeatureGlobal DatumLocal Datum
CoverageWorldwideSpecific region
AccuracyGood globally, but minor local errorsHigh accuracy in a specific area
ExampleWGS84 (Global)NAD83 (North America), Everest 1830 (India)

Practical Example

  • Google Earth & GPS use WGS84 for global consistency.
  • A cadastral survey in Kerala, India may use Everest 1830 for precise local mapping.

5. Importance of Choosing the Right Datum in GIS

Selecting the correct datum is crucial to avoid coordinate mismatches and positional errors in GIS.

  • If a dataset in WGS84 is overlaid with data in NAD83, there might be offsets of several meters.
  • Elevation data based on ellipsoidal height may differ significantly from a geoid-based height.
  • Geodetic datums define horizontal positioning (latitude/longitude).
  • Vertical datums define elevation or depth.
  • Global datums (e.g., WGS84) are suitable for worldwide applications, while local datums (e.g., NAD83, Everest 1830) provide higher accuracy in specific regions.

Comments

Popular posts from this blog

Geography of Landslides. Mitigation and Resilience.

A landslide is a geological event in which a mass of rock, earth, or debris moves down a slope under the force of gravity. Landslides can range in size from small to large and can be triggered by natural events such as heavy rainfall, earthquakes, or volcanic activity, or by human activities such as construction or mining. The geography of landslides is affected by a variety of factors that can increase the likelihood of landslides occurring in a particular area. These factors include slope angle and steepness, the type of soil and rock present, the climate and weather patterns of the region, the presence or absence of vegetation, and human activities such as construction, mining, and deforestation. Areas with steep slopes are more prone to landslides because gravity has a stronger effect on loose soil and rock, making it more likely to move downhill. Similarly, areas with loose, sandy soil or weak, fractured rock are more prone to landslides because they are less stable and more easil...

Flood prone regions India

Floods are natural disasters characterized by the overflow of water onto normally dry land. Various factors contribute to floods, including intense rainfall, rapid snowmelt, storm surges from coastal storms, and the failure of dams or levees. The geographical explanation involves understanding the key components of flood-prone regions: 1. Proximity to Water Bodies:    Flood-prone regions are often situated near rivers, lakes, or coastal areas. These locations are more susceptible to flooding as they are in close proximity to large water sources that can overflow during heavy precipitation or storms. 2. Topography:    Low-lying areas with gentle slopes are prone to flooding. Water naturally flows to lower elevations, and flat terrains allow water to accumulate easily. Valleys and floodplains are common flood-prone areas due to their topographical characteristics. 3. Rainfall Patterns:    Regions with high and concentrated rainfall are more likely to experience flooding. Intense and prol...

Geography of Flood. Types. Charector.

The geography of floods refers to the characteristics and patterns of floods in different geographic regions. Floods can occur in various landscapes, such as mountains, plains, coastal areas, and urban environments. The geography of a region plays a significant role in determining the frequency, magnitude, and impacts of floods. Some of the factors that influence the geography of floods include: Topography: The shape and elevation of the land can affect the flow and accumulation of water during a flood. For example, flat terrain can lead to slow-moving and widespread flooding, while steep slopes can result in flash floods and landslides. Climate: Regions with high rainfall or snowmelt can experience more frequent and intense floods, while dry regions may experience flash floods due to sudden, heavy rainfall. Hydrology: The characteristics of a river basin, such as its size, shape, and water flow, can influence the severity of a flood. For example, large river basins with extensive floo...

Landslides. USGS

Landslides. TYPES OF LANDSLIDES The term "landslide" describes a wide variety of processes that result in the downward and outward movement of slope-forming materials including rock, soil, artificial fill, or a combination of these. The materials may move by falling, toppling, sliding, spreading, or flowing. The animated GIF shows a graphic illustration of different types of landslides, with the commonly accepted terminology describing their features. The various types of landslides can be differentiated by the kinds of material involved and the mode of movement.

Prevention and Mitigation

In disaster management, prevention and mitigation are two fundamental strategies aimed at reducing disaster risks and their potential impacts. While both are proactive measures, they differ in scope and approach. 1. Prevention Prevention refers to measures taken to avoid or completely eliminate the occurrence of a disaster. It focuses on long-term strategies to ensure that hazards do not turn into disasters. Hazard Prevention – Actions taken to remove or reduce the presence of hazards (e.g., banning construction in earthquake-prone zones). Structural Prevention – Engineering solutions designed to eliminate hazards (e.g., building dams to prevent floods). Non-Structural Prevention – Policies, land-use regulations, and awareness campaigns to avoid exposure to hazards. Disaster Risk Reduction (DRR) – The systematic approach to identifying, assessing, and reducing risks of disasters. Zero Risk Approach – The idealistic goal of completely eliminating disaster risks, thoug...