Skip to main content

Datums Geodetic Vertical Global Local

A datum is a mathematical model that defines how the Earth's shape is represented for mapping and spatial data analysis. It serves as the foundation for geographic coordinate systems (GCS) and projected coordinate systems (PCS). Datums are crucial for accurate positioning, navigation, and geographic measurements.

1. Types of Datums in GIS

Datums are categorized into:

  1. Geodetic Datums (Horizontal Datums) – Define positions on the Earth's surface using latitude and longitude.
  2. Vertical Datums – Define elevations or depths relative to a reference surface (e.g., sea level).
  3. Global vs. Local Datums – Distinguish between datums that are globally applicable versus those optimized for a specific region.

2. Geodetic Datum (Horizontal Datum)

A geodetic datum defines a reference system for measuring positions (latitude, longitude) on the Earth's surface. It accounts for the Earth's ellipsoidal shape and is crucial for GPS and mapping applications.

Key Components of a Geodetic Datum

  1. Ellipsoid (Spheroid): An idealized mathematical model approximating the Earth's shape.
    • Example: WGS84, GRS80, Clarke 1866.
  2. Reference Point: A fixed point from which measurements originate.
  3. Coordinate System: Specifies how latitude and longitude are measured.

Examples of Geodetic Datums

  • WGS84 (World Geodetic System 1984) → Used by GPS and Google Maps.
  • NAD83 (North American Datum 1983) → Used in North America.
  • ETRS89 (European Terrestrial Reference System 1989) → Used in Europe.

Practical Use Case

  • When using GPS, your device references WGS84, ensuring global consistency in navigation.
  • A local GIS project in India may use Everest 1830 for better accuracy.

3. Vertical Datum

A vertical datum defines the reference surface for measuring elevation or depth. It is essential for terrain analysis, flood modeling, and coastal studies.

Types of Vertical Datums

  1. Tidal Datum: Based on sea level (e.g., Mean Sea Level - MSL).
  2. Geoid-Based Datum: Uses the geoid, a model of the Earth's gravity field (e.g., EGM96, NAVD88).
  3. Ellipsoidal Datum: Uses the reference ellipsoid for height measurements (e.g., WGS84 ellipsoidal height).

Examples of Vertical Datums

  • EGM96 (Earth Gravitational Model 1996) → Used globally.
  • NAVD88 (North American Vertical Datum 1988) → Used in the USA.
  • MSL (Mean Sea Level) → Used as a general reference for elevations.

Practical Use Case

  • Elevation data from NASA's SRTM (Shuttle Radar Topography Mission) is referenced to the EGM96 geoid.
  • Coastal flood risk mapping relies on Mean Sea Level (MSL) as a reference.

4. Global vs. Local Datums

Global Datums

A global datum provides a reference system that fits the entire Earth. It is optimized for worldwide accuracy but may introduce small errors at a local scale.

  • Example: WGS84 (World Geodetic System 1984) – Used for GPS globally.

Local Datums

A local datum is optimized for a specific country or region, providing higher accuracy within that area but not globally.

  • Example: Everest 1830 – Used in India.

Comparison Table: Global vs. Local Datums

FeatureGlobal DatumLocal Datum
CoverageWorldwideSpecific region
AccuracyGood globally, but minor local errorsHigh accuracy in a specific area
ExampleWGS84 (Global)NAD83 (North America), Everest 1830 (India)

Practical Example

  • Google Earth & GPS use WGS84 for global consistency.
  • A cadastral survey in Kerala, India may use Everest 1830 for precise local mapping.

5. Importance of Choosing the Right Datum in GIS

Selecting the correct datum is crucial to avoid coordinate mismatches and positional errors in GIS.

  • If a dataset in WGS84 is overlaid with data in NAD83, there might be offsets of several meters.
  • Elevation data based on ellipsoidal height may differ significantly from a geoid-based height.
  • Geodetic datums define horizontal positioning (latitude/longitude).
  • Vertical datums define elevation or depth.
  • Global datums (e.g., WGS84) are suitable for worldwide applications, while local datums (e.g., NAD83, Everest 1830) provide higher accuracy in specific regions.

Comments

Popular posts from this blog

Natural Disasters

A natural disaster is a catastrophic event caused by natural processes of the Earth that results in significant loss of life, property, and environmental resources. It occurs when a hazard (potentially damaging physical event) interacts with a vulnerable population and leads to disruption of normal life . Key terms: Hazard → A potential natural event (e.g., cyclone, earthquake). Disaster → When the hazard causes widespread damage due to vulnerability. Risk → Probability of harmful consequences from interaction of hazard and vulnerability. Vulnerability → Degree to which a community or system is exposed and unable to cope with the hazard. Resilience → Ability of a system or society to recover from the disaster impact. 👉 Example: An earthquake in an uninhabited desert is a hazard , but not a disaster unless people or infrastructure are affected. Types Natural disasters can be classified into geophysical, hydrological, meteorological, clim...

Types of Remote Sensing

Remote Sensing means collecting information about the Earth's surface without touching it , usually using satellites, aircraft, or drones . There are different types of remote sensing based on the energy source and the wavelength region used. 🛰️ 1. Active Remote Sensing 📘 Concept: In active remote sensing , the sensor sends out its own energy (like a signal or pulse) to the Earth's surface. The sensor then records the reflected or backscattered energy that comes back from the surface. ⚙️ Key Terminology: Transmitter: sends energy (like a radar pulse or laser beam). Receiver: detects the energy that bounces back. Backscatter: energy that is reflected back to the sensor. 📊 Examples of Active Sensors: RADAR (Radio Detection and Ranging): Uses microwave signals to detect surface roughness, soil moisture, or ocean waves. LiDAR (Light Detection and Ranging): Uses laser light (near-infrared) to measure elevation, vegetation...

geostationary and sun-synchronous

Orbital characteristics of Remote sensing satellite geostationary and sun-synchronous  Orbits in Remote Sensing Orbit = the path a satellite follows around the Earth. The orbit determines what part of Earth the satellite can see , how often it revisits , and what applications it is good for . Remote sensing satellites mainly use two standard orbits : Geostationary Orbit (GEO) Sun-Synchronous Orbit (SSO)  Geostationary Satellites (GEO) Characteristics Altitude : ~35,786 km above the equator. Period : 24 hours → same as Earth's rotation. Orbit type : Circular, directly above the equator . Appears "stationary" over one fixed point on Earth. Concepts & Terminologies Geosynchronous = orbit period matches Earth's rotation (24h). Geostationary = special type of geosynchronous orbit directly above equator → looks fixed. Continuous coverage : Can monitor the same area all the time. Applications Weather...

India remote sensing

1. Foundational Phase (Early 1970s – Early 1980s) Objective: To explore the potential of space-based observation for national development. 1972: The Space Applications Programme (SAP) was initiated by the Indian Space Research Organisation (ISRO), focusing on applying space technology for societal benefits. 1975: The Department of Space (DoS) was established, providing an institutional base for space applications, including remote sensing. 1977: India began aerial and balloon-borne experiments to study Earth resources and assess how remote sensing data could aid in agriculture, forestry, and hydrology. 1978 (June 7): Bhaskara-I launched by the Soviet Union — India's first experimental Earth Observation satellite . Payloads: TV cameras (for land and ocean surface observation) and a Microwave Radiometer. Significance: Proved that satellite-based Earth observation was feasible for India's needs. 1981 (November 20): Bhaskara-II launche...

Linear Arrays Along-Track Scanners or Pushbroom Scanners

Multispectral Imaging Using Linear Arrays (Along-Track Scanners or Pushbroom Scanners) Multispectral Imaging: As previously defined, this involves capturing images using multiple sensors that are sensitive to different wavelengths of electromagnetic radiation. Linear Array of Detectors (A): This refers to a row of discrete detectors arranged in a straight line. Each detector is responsible for measuring the radiation within a specific wavelength band. Focal Plane (B): This is the plane where the image is formed by the lens system. It is the location where the detectors are placed to capture the focused image. Formed by Lens Systems (C): The lens system is responsible for collecting and focusing the incoming radiation onto the focal plane. It acts like a camera lens, creating a sharp image of the scene. Ground Resolution Cell (D): As previously defined, this is the smallest area on the ground that can be resolved by a remote sensing sensor. In the case of linear array scanne...