Skip to main content

Hazard Mapping Spatial Planning Evacuation Planning GIS


Geographic Information Systems (GIS) play a pivotal role in disaster management by providing the tools and frameworks necessary for effective hazard mapping, spatial planning, and evacuation planning. These concepts are integral for understanding disaster risks, preparing for potential hazards, and ensuring that resources are efficiently allocated during and after a disaster.


  • 1. Hazard Mapping:

    • Concept: Hazard mapping involves the process of identifying, assessing, and visually representing the geographical areas that are at risk of certain natural or human-made hazards. Hazard maps display the probability, intensity, and potential impact of specific hazards (e.g., floods, earthquakes, hurricanes, landslides) within a given area.
    • Terminologies:
      • Hazard Zone: An area identified as being vulnerable to a particular hazard (e.g., flood zones, seismic zones).
      • Hazard Risk: The likelihood of a disaster occurring in a specific location, influenced by factors like geography, climate, and human activity.
      • Vulnerability Mapping: A subset of hazard mapping that identifies the potential impacts of disasters on people, property, and infrastructure in a given area.
    • Example:
      • Flood Hazard Mapping: A GIS-based flood hazard map can delineate areas at risk of flooding during heavy rain or storm surges. Bangladesh, for example, utilizes extensive flood hazard maps to highlight areas near rivers and coastal zones vulnerable to flooding, aiding authorities in planning flood prevention measures and prioritizing flood defenses.
      • Earthquake Hazard Mapping: California employs GIS to create seismic hazard maps that indicate areas at risk of earthquakes based on fault lines, historical data, and geological conditions. These maps inform building codes, land-use planning, and emergency response strategies.
    • Importance: Hazard maps are crucial for decision-making, providing valuable data for policymakers, urban planners, and emergency responders. They guide land-use planning, resource allocation, and disaster preparedness efforts.

  • 2. Spatial Planning:

    • Concept: Spatial planning involves organizing and managing land use and development in a way that minimizes risks, ensures sustainability, and promotes safety. In the context of disaster management, spatial planning considers the geographical distribution of hazards and guides the development of infrastructure, housing, and other critical services to reduce vulnerability to natural disasters.
    • Terminologies:
      • Land Use Planning: The process of determining the most appropriate uses of land (e.g., residential, commercial, industrial, agricultural) to minimize risks and enhance the resilience of communities.
      • Zoning: Dividing land into areas or zones based on the types of activities permitted (e.g., residential, commercial, floodplain).
      • Resilience: The ability of a community or infrastructure to withstand and recover from disasters.
    • Example:
      • Coastal Development in Hazard-Prone Areas: In many coastal regions (e.g., Florida in the U.S. or the Philippines), spatial planning is used to limit or regulate construction in flood-prone or hurricane-prone areas. Zoning regulations may prohibit the construction of high-density housing in areas that are regularly flooded or susceptible to storm surges. This helps to reduce the risk of property damage and loss of life during storms and floods.
      • Urban Planning for Earthquake Safety: In Japan, spatial planning includes enforcing building codes that ensure buildings in earthquake-prone areas are seismically resistant. Additionally, no-build zones might be established in areas at risk of landslides or liquefaction during an earthquake.
    • Importance: Spatial planning helps prevent the creation of new risks, minimize exposure to existing hazards, and ensure that communities are resilient to disasters. It is crucial for sustainable urban development and disaster risk reduction.

  • 3. Evacuation Planning:

    • Concept: Evacuation planning involves preparing strategies and procedures to safely move people from areas at risk of a disaster to safer locations. Effective evacuation planning ensures that evacuation routes, shelters, and resources are in place before a disaster strikes, enabling a coordinated and efficient response during emergencies.
    • Terminologies:
      • Evacuation Routes: Predefined paths used to move people from danger zones to safe locations. These routes are critical in ensuring a smooth and orderly evacuation during a disaster.
      • Shelter Planning: The identification and establishment of safe spaces (e.g., schools, community centers, stadiums) where evacuees can seek refuge.
      • Mass Evacuation: A large-scale evacuation that may be required during major disasters, such as hurricanes, floods, or wildfires.
    • Example:
      • Hurricane Evacuation in the U.S.: During Hurricane Katrina (2005), evacuation planning was critical. Authorities utilized GIS to map evacuation routes out of New Orleans and identify shelters for evacuees. In the aftermath, lessons were learned about the importance of pre-disaster planning, including the need for better public communication and transportation options for vulnerable populations.
      • Earthquake Evacuation in Japan: In Tokyo, evacuation plans are based on seismic hazard maps, with designated routes for evacuation in the event of an earthquake or tsunami. The city also conducts regular evacuation drills to ensure that citizens are familiar with evacuation procedures.
    • Importance: Evacuation planning ensures the safety of individuals and communities during disasters. It helps minimize casualties by providing clear instructions and well-maintained routes for evacuation, as well as ensuring that shelters and resources are available.

  • 4. Geographic Information Systems (GIS):

    • Concept: Geographic Information Systems (GIS) are powerful tools used to capture, store, analyze, and visualize spatial data. In disaster management, GIS integrates various types of geographical and environmental data to support decision-making in hazard mapping, spatial planning, evacuation, and response efforts. GIS enables disaster managers to visualize complex data and make informed decisions quickly.
    • Terminologies:
      • Spatial Data: Information that is related to a specific location or area on the Earth's surface. This can include maps, satellite imagery, and other geospatial data.
      • Layers: In GIS, data is often organized into layers, each representing a different aspect of the environment, such as population density, infrastructure, hazard zones, or flood risk.
      • Remote Sensing: The use of satellite imagery or aerial photography to collect data about the Earth's surface, which can be used in GIS for hazard mapping and damage assessment.
    • Example:
      • Hazard Mapping with GIS: In India, GIS is used to create flood hazard maps for flood-prone regions along the Ganges River. These maps assist local governments in identifying high-risk areas and implementing flood control measures, such as the construction of embankments and the planning of emergency response strategies.
      • Evacuation Planning with GIS: In New York City, GIS is used to plan evacuation routes for various disaster scenarios, including hurricanes, floods, and terrorism-related incidents. GIS helps authorities analyze population density, transportation networks, and vulnerable communities to determine the most efficient routes for evacuation.
    • Importance: GIS is an essential tool for disaster management because it integrates data from various sources, provides real-time information, and facilitates decision-making processes. It supports hazard mapping, spatial planning, evacuation, and damage assessment by offering precise, location-based insights.

Fyugp note 

Disaster Management 

Comments

Popular posts from this blog

GIS: Real World and Representations - Modeling and Maps

Geographic Information Systems (GIS) serve as a bridge between the real world and digital representations of geographic phenomena. These representations allow users to store, analyze, and visualize spatial data for informed decision-making. Two key aspects of GIS in this context are modeling and maps , both of which are used to represent real-world geographic features and phenomena in a structured, analyzable format. Let's delve into these concepts, terminologies, and examples in detail. 1. Real World and Representations in GIS Concept: The real world comprises physical, tangible phenomena, such as landforms, rivers, cities, and infrastructure, as well as more abstract elements like weather patterns, population densities, and traffic flow. GIS allows us to represent these real-world phenomena digitally, enabling spatial analysis, decision-making, and visualization. The representation of the real world in GIS is achieved through various models and maps , which simplify...

History of GIS

1. 1832 - Early Spatial Analysis in Epidemiology:    - Charles Picquet creates a map in Paris detailing cholera deaths per 1,000 inhabitants.    - Utilizes halftone color gradients for visual representation. 2. 1854 - John Snow's Cholera Outbreak Analysis:    - Epidemiologist John Snow identifies cholera outbreak source in London using spatial analysis.    - Maps casualties' residences and nearby water sources to pinpoint the outbreak's origin. 3. Early 20th Century - Photozincography and Layered Mapping:    - Photozincography development allows maps to be split into layers for vegetation, water, etc.    - Introduction of layers, later a key feature in GIS, for separate printing plates. 4. Mid-20th Century - Computer Facilitation of Cartography:    - Waldo Tobler's 1959 publication details using computers for cartography.    - Computer hardware development, driven by nuclear weapon research, leads to broader mapping applications by early 1960s. 5. 1960 - Canada Geograph...

The Nature and Character of Geographic Information Systems (GIS)

GIS is a dynamic and integrative system designed to handle spatial data. Its nature and character define its core purpose and capabilities, making it indispensable for analyzing and understanding geographic phenomena. Below is an exploration of the nature and character of GIS: 1. Integrative Nature GIS integrates data from various sources such as satellite imagery, GPS devices, and field surveys, organizing them into layers for analysis. It combines spatial (location-based) and non-spatial (attribute-based) data to provide comprehensive insights into geographic phenomena. This integration allows diverse datasets, such as demographic information, land use patterns, and climate data, to be analyzed in a unified platform. 2. Analytical Nature GIS is inherently analytical, enabling users to explore spatial relationships, patterns, and trends. It supports advanced spatial analysis methods such as proximity, overlay, and network analysis to address specific geographic questions. The ...

Spatial Database in GIS

A spatial database is a type of database that is designed to store and process spatial data efficiently. Spatial data refers to data that represents objects in geometric space, such as locations, shapes, and their relationships. Unlike traditional databases, spatial databases include special functionalities for handling spatial data types like points, lines, and polygons. 2. Geometric Objects Spatial databases support a variety of geometric objects: Points : Represent a specific location in space (e.g., the latitude and longitude of a city). Lines : Represent linear features (e.g., roads, rivers). Polygons : Represent area-based features (e.g., boundaries of countries, lakes). Some advanced spatial databases also support: 3D Objects : Represent volumetric data (e.g., buildings, geological structures). Topological Coverages : Maintain the spatial relationships between objects (e.g., adjacency, containment). Linear Networks : Model connected features (e.g., transportation ne...

The Purpose of Geographic Information Systems (GIS)

GIS serves as a versatile tool to solve spatial problems, analyze geographic data, and support informed decision-making across diverse domains. Below are key purposes of GIS explained in detail: 1. Data Integration and Management Purpose : To combine, organize, and manage spatial and non-spatial data from various sources. GIS allows users to integrate data such as maps, satellite imagery, field surveys, and statistical records into a unified system. This creates a comprehensive database that can be efficiently accessed, updated, and analyzed for various applications. 2. Spatial Analysis and Pattern Recognition Purpose : To analyze spatial relationships, identify patterns, and understand trends. GIS facilitates advanced spatial analyses, such as proximity, overlay, and clustering. For example, it can identify the spread of diseases, monitor land use changes, or determine the shortest route between two points. 3. Visualization of Geographic Information Purpose : To crea...