Skip to main content

Scope of Disaster Management


Disaster management refers to the systematic approach to managing and mitigating the impacts of disasters, encompassing both natural hazards (e.g., earthquakes, floods, hurricanes) and man-made disasters (e.g., industrial accidents, terrorism, nuclear accidents). Its primary objectives are to minimize potential losses, provide timely assistance to those affected, and facilitate swift and effective recovery.

The scope of disaster management is multifaceted, encompassing a series of interconnected activities: preparedness, response, recovery, and mitigation. These activities must be strategically implemented before, during, and after a disaster.

Key Concepts, Terminologies, and Examples

  • 1. Awareness:

    • Concept: Fostering public understanding of potential hazards and appropriate responses before, during, and after disasters. This involves disseminating information about risks, safety measures, and recommended actions.
    • Terminologies:
      • Hazard Awareness: Recognizing the types of natural or man-made hazards that could impact a community (e.g., earthquakes, tsunamis, floods).
      • Risk Communication: Effectively conveying information about risks and safety measures to the public.
    • Example: In earthquake-prone regions, public awareness campaigns might emphasize the importance of the "Drop, Cover, and Hold On" drill to protect oneself during an earthquake. Similarly, flood-prone areas may educate residents on evacuation routes and flood-proofing techniques.
  • 2. Education:

    • Concept: A long-term process of equipping individuals and communities with the knowledge and skills necessary to prepare for, respond to, and recover from various disasters. This includes practical training in survival skills, emergency procedures, and the protection of personal property.
    • Terminologies:
      • Preparedness Training: Providing individuals and communities with the skills and knowledge to prepare for emergencies (e.g., first aid, evacuation plans).
      • Community-Based Disaster Risk Management (CBDRM): A participatory approach that actively involves local communities in disaster preparedness, response, and recovery planning.
    • Example: In cyclone-prone regions, schools and community centers might conduct disaster preparedness education programs. These programs could include training on creating emergency kits, developing family evacuation plans, and practicing first aid for injury management.
  • 3. Prediction and Warning Systems:

    • Concept: Utilizing technologies and methodologies to forecast the occurrence of disasters, such as weather events (hurricanes, floods) or geological events (earthquakes, volcanoes). This information is then used to provide timely warnings to the public, enabling them to take necessary protective actions.
    • Terminologies:
      • Early Warning Systems (EWS): Systems that provide alerts about impending disasters, typically through communication technologies such as sirens, mobile alerts, or TV/radio broadcasts.
      • Forecasting: Predicting the likelihood of a disaster occurring based on scientific data and models.
    • Example: The National Oceanic and Atmospheric Administration (NOAA) in the U.S. operates a hurricane prediction and warning system. This system issues alerts based on weather patterns, enabling affected populations to evacuate or take precautionary measures before a storm.
  • 4. Phases of Emergency Management:

    • a. Prevention: Actions taken to avoid or reduce the impact of disasters before they occur.
      • Example: Building codes and land-use planning that restrict construction in flood-prone areas or on fault lines to minimize the risk of damage from floods or earthquakes.
    • b. Mitigation: Efforts to reduce the severity of a disaster's impact, such as reinforcing infrastructure or developing policies to reduce vulnerability.
      • Example: Installing seismic retrofitting in buildings to reduce damage during an earthquake, or creating flood barriers to protect cities from rising water levels.
    • c. Preparedness: Actions taken to prepare for a disaster, such as training, planning, and stockpiling resources.
      • Example: Governments and organizations conducting disaster drills, such as evacuation exercises or first aid training, to ensure that everyone knows how to respond during a disaster.
    • d. Response: The immediate action taken after a disaster to provide aid, save lives, and stabilize the situation.
      • Example: After an earthquake, rescue teams are deployed, and emergency shelters are set up for displaced people.
    • e. Recovery: The long-term process of rebuilding and restoring normalcy after a disaster. This includes restoring infrastructure, providing psychological support to survivors, and facilitating economic recovery.
      • Example: After a major flood, recovery efforts might include rebuilding homes, restoring schools and hospitals, and providing financial assistance to affected families.
  • 5. Elements of Disaster Management:

    • a. Risk Management: Identifying potential hazards, assessing their impact, and taking measures to reduce or avoid the associated risks.
      • Example: Installing flood control infrastructure in a river basin to mitigate the risk of flooding during heavy rains.
    • b. Loss Management: Minimizing the physical, financial, and social losses resulting from a disaster.
      • Example: Insurance programs and compensation schemes designed to assist communities in recovering financially from property damage.
    • c. Control of Events: Managing the situation in real-time during a disaster, including coordinating resources, personnel, and relief efforts.
      • Example: During a wildfire, emergency management teams control the event by deploying firefighting teams, managing evacuation orders, and providing real-time updates.
    • d. Equity of Assistance: Ensuring that all affected individuals and communities, regardless of their social, economic, or demographic status, receive appropriate aid and support.
      • Example: Ensuring that relief efforts include vulnerable groups such as elderly people, children, and persons with disabilities, who may require additional assistance during a disaster.
    • e. Resource Management: Efficiently managing the physical, human, and financial resources needed for disaster response and recovery.
      • Example: Setting up logistics hubs to distribute food, water, and medical supplies to affected populations after a disaster.
    • f. Impact Reduction: Taking actions to minimize the long-term effects of disasters on human health, the environment, and economies.
      • Example: Implementing community-based disaster risk reduction programs to build resilience in communities through education, infrastructure, and early warning systems.
  • 6. Disaster Recovery Planning:

    • Concept: Preparing strategies and procedures for recovering critical infrastructure and services (such as IT systems and networks) in the event of a disaster. This ensures that essential operations can be quickly restored to minimize downtime.
    • Terminologies:
      • Recovery Time Objective (RTO): The maximum acceptable amount of time that an IT system or service can be down after a disaster.
      • Critical IT Systems: Systems that are essential for the operation of an organization, such as servers, databases, and communication networks.
    • Example: A company might have a disaster recovery plan that includes off-site backups of data, alternate power supplies, and predefined steps to restore critical IT systems and networks within hours after a cyber-attack or natural disaster.

The Goal of Disaster Management

The primary goal of disaster management is to:

  • Reduce or avoid potential losses from hazards.
  • Provide prompt assistance to victims.
  • Achieve rapid and effective recovery.

This is accomplished through a combination of prevention, mitigation, preparedness, response, and recovery activities, along with strong coordination and resource management.

Example: The Indian government's response to the 2004 Indian Ocean tsunami included swift rescue operations, the establishment of relief camps for affected populations, and long-term recovery efforts, such as rebuilding infrastructure and providing psychological support to survivors.

Fyugp note 

Disaster Management 

Comments

Popular posts from this blog

Types of Remote Sensing

Remote Sensing means collecting information about the Earth's surface without touching it , usually using satellites, aircraft, or drones . There are different types of remote sensing based on the energy source and the wavelength region used. 🛰️ 1. Active Remote Sensing 📘 Concept: In active remote sensing , the sensor sends out its own energy (like a signal or pulse) to the Earth's surface. The sensor then records the reflected or backscattered energy that comes back from the surface. ⚙️ Key Terminology: Transmitter: sends energy (like a radar pulse or laser beam). Receiver: detects the energy that bounces back. Backscatter: energy that is reflected back to the sensor. 📊 Examples of Active Sensors: RADAR (Radio Detection and Ranging): Uses microwave signals to detect surface roughness, soil moisture, or ocean waves. LiDAR (Light Detection and Ranging): Uses laser light (near-infrared) to measure elevation, vegetation...

geostationary and sun-synchronous

Orbital characteristics of Remote sensing satellite geostationary and sun-synchronous  Orbits in Remote Sensing Orbit = the path a satellite follows around the Earth. The orbit determines what part of Earth the satellite can see , how often it revisits , and what applications it is good for . Remote sensing satellites mainly use two standard orbits : Geostationary Orbit (GEO) Sun-Synchronous Orbit (SSO)  Geostationary Satellites (GEO) Characteristics Altitude : ~35,786 km above the equator. Period : 24 hours → same as Earth's rotation. Orbit type : Circular, directly above the equator . Appears "stationary" over one fixed point on Earth. Concepts & Terminologies Geosynchronous = orbit period matches Earth's rotation (24h). Geostationary = special type of geosynchronous orbit directly above equator → looks fixed. Continuous coverage : Can monitor the same area all the time. Applications Weather...

India remote sensing

1. Foundational Phase (Early 1970s – Early 1980s) Objective: To explore the potential of space-based observation for national development. 1972: The Space Applications Programme (SAP) was initiated by the Indian Space Research Organisation (ISRO), focusing on applying space technology for societal benefits. 1975: The Department of Space (DoS) was established, providing an institutional base for space applications, including remote sensing. 1977: India began aerial and balloon-borne experiments to study Earth resources and assess how remote sensing data could aid in agriculture, forestry, and hydrology. 1978 (June 7): Bhaskara-I launched by the Soviet Union — India's first experimental Earth Observation satellite . Payloads: TV cameras (for land and ocean surface observation) and a Microwave Radiometer. Significance: Proved that satellite-based Earth observation was feasible for India's needs. 1981 (November 20): Bhaskara-II launche...

Natural Disasters

A natural disaster is a catastrophic event caused by natural processes of the Earth that results in significant loss of life, property, and environmental resources. It occurs when a hazard (potentially damaging physical event) interacts with a vulnerable population and leads to disruption of normal life . Key terms: Hazard → A potential natural event (e.g., cyclone, earthquake). Disaster → When the hazard causes widespread damage due to vulnerability. Risk → Probability of harmful consequences from interaction of hazard and vulnerability. Vulnerability → Degree to which a community or system is exposed and unable to cope with the hazard. Resilience → Ability of a system or society to recover from the disaster impact. 👉 Example: An earthquake in an uninhabited desert is a hazard , but not a disaster unless people or infrastructure are affected. Types Natural disasters can be classified into geophysical, hydrological, meteorological, clim...

Linear Arrays Along-Track Scanners or Pushbroom Scanners

Multispectral Imaging Using Linear Arrays (Along-Track Scanners or Pushbroom Scanners) Multispectral Imaging: As previously defined, this involves capturing images using multiple sensors that are sensitive to different wavelengths of electromagnetic radiation. Linear Array of Detectors (A): This refers to a row of discrete detectors arranged in a straight line. Each detector is responsible for measuring the radiation within a specific wavelength band. Focal Plane (B): This is the plane where the image is formed by the lens system. It is the location where the detectors are placed to capture the focused image. Formed by Lens Systems (C): The lens system is responsible for collecting and focusing the incoming radiation onto the focal plane. It acts like a camera lens, creating a sharp image of the scene. Ground Resolution Cell (D): As previously defined, this is the smallest area on the ground that can be resolved by a remote sensing sensor. In the case of linear array scanne...