Skip to main content

Cyclone


1. Low-Pressure System

A low-pressure system is an area where the atmospheric pressure is lower than its surroundings. These systems are associated with rising warm air, which leads to cloud formation and precipitation. They are the primary drivers of weather disturbances like cyclones and storms.

  • Concept: Warm air rises, creating a region of lower pressure at the surface. As air converges to fill this void, it starts to rotate due to the Coriolis effect.
  • Example: A monsoon low-pressure system forming over the Bay of Bengal, leading to heavy rains in eastern India.

2. Depression

A depression is a more developed form of a low-pressure system with a well-defined circulation. It brings moderate to heavy rainfall and gusty winds.

  • Concept: When a low-pressure system intensifies with wind speeds between 31-49 km/h, it is classified as a depression.
  • Example: The depression over the Arabian Sea that causes heavy rainfall in Mumbai during the monsoon season.

3. Deep Depression

A deep depression is a further intensification of a depression with stronger winds and heavier rainfall.

  • Concept: A depression becomes a deep depression when wind speeds increase to 50-61 km/h. This stage is a precursor to a tropical storm or cyclone.
  • Example: A deep depression forming over the Bay of Bengal, later developing into Cyclone Yaas in 2021.

4. Cyclone

A cyclone is a large-scale air mass that rotates around a strong center of low atmospheric pressure. It is classified into different categories based on wind speed.

  • Concept: A cyclone forms when a deep depression further intensifies, with wind speeds exceeding 62 km/h. Warm ocean waters provide energy, causing rapid intensification.
  • Types of Cyclones:
    • Tropical Cyclones: Form over warm ocean waters (e.g., Cyclone Amphan in 2020).
    • Extratropical Cyclones: Occur outside tropical regions and are associated with frontal systems (e.g., Nor'easters in the U.S.).

5. Storm

A storm is a general term for a disturbed state of the atmosphere that can bring strong winds, heavy rain, thunder, lightning, and sometimes snow.

  • Concept: When wind speeds reach 62-88 km/h, the system is called a "Cyclonic Storm." If it intensifies further, it may become a Severe Cyclonic Storm (89-117 km/h) or even a Super Cyclone (>222 km/h).
  • Example: Cyclone Fani (2019) was classified as an Extremely Severe Cyclonic Storm with wind speeds exceeding 250 km/h, causing significant destruction in Odisha, India.

Wind Speed Classifications

System TypeWind Speed (km/h)
Low Pressure< 31
Depression31-49
Deep Depression50-61
Cyclonic Storm62-88
Severe Cyclonic Storm89-117
Very Severe Cyclonic Storm118-165
Extremely Severe Cyclonic Storm166-221
Super Cyclone> 222

Comments

Popular posts from this blog

Disaster Management

1. Disaster Risk Analysis β†’ Disaster Risk Reduction β†’ Disaster Management Cycle Disaster Risk Analysis is the first step in managing disasters. It involves assessing potential hazards, identifying vulnerable populations, and estimating possible impacts. Once risks are identified, Disaster Risk Reduction (DRR) strategies come into play. DRR aims to reduce risk and enhance resilience through planning, infrastructure development, and policy enforcement. The Disaster Management Cycle then ensures a structured approach by dividing actions into pre-disaster, during-disaster, and post-disaster phases . Example Connection: Imagine a coastal city prone to cyclones: Risk Analysis identifies low-lying areas and weak infrastructure. Risk Reduction includes building seawalls, enforcing strict building codes, and training residents for emergency situations. The Disaster Management Cycle ensures ongoing preparedness, immediate response during a cyclone, and long-term recovery afterw...

KSHEC Scholarship 2024-25

KSHEC Scholarship 2024-25 Alert! First-Year UG Students Only, Don't Miss This Golden Opportunity! πŸ’‘βœ¨ Are you a first-year undergraduate student studying in a Government or Aided College in Kerala? Do you need financial assistance to continue your education without stress? The Kerala State Higher Education Council (KSHEC) Scholarship is here to support YOU!  This scholarship is a lifeline for deserving students, helping them focus on their studies without worrying about financial burdens. If you meet the criteria, APPLY NOW and take a step towards a brighter future! 🌟 βœ… Simple Online Application – Quick & easy process!  πŸ“Œ Who Can Apply? βœ”οΈ First-year UG students ONLY βœ”οΈ Must be studying in an Arts & Science Government or Aided college in Kerala βœ”οΈ Professional Course students are not eligible  πŸ”Ή Scholarship Amounts Per Year: πŸ“Œ 1st Year FYUGP – β‚Ή12,000 πŸ“Œ 2nd Year FYUGP – β‚Ή18,000 πŸ“Œ 3rd Year FYUGP – β‚Ή24,000 πŸ“Œ 4th Year FYUGP – β‚Ή40,000 πŸ“Œ 5th Year PG – β‚Ή60,000  Great News...

Pre During and Post Disaster

Disaster management is a structured approach aimed at reducing risks, responding effectively, and ensuring a swift recovery from disasters. It consists of three main phases: Pre-Disaster (Mitigation & Preparedness), During Disaster (Response), and Post-Disaster (Recovery). These phases involve various strategies, policies, and actions to protect lives, property, and the environment. Below is a breakdown of each phase with key concepts, terminologies, and examples. 1. Pre-Disaster Phase (Mitigation and Preparedness) Mitigation: This phase focuses on reducing the severity of a disaster by minimizing risks and vulnerabilities. It involves structural and non-structural measures. Hazard Identification: Recognizing potential natural and human-made hazards (e.g., earthquakes, floods, industrial accidents). Risk Assessment: Evaluating the probability and consequences of disasters using GIS, remote sensing, and historical data. Vulnerability Analysis: Identifying areas and p...

Upslope and Downslope Factors in Flooding

Flooding is influenced by both upslope factors and downslope factors within a river basin. Upslope factors refer to the geographical and environmental characteristics of higher elevations that contribute to flood potential downstream. These include steep slopes, large watershed areas, and high rainfall intensity, which accelerate runoff into rivers. Downslope factors involve the characteristics of lower-elevation areas that can exacerbate flooding once water reaches them. These include narrow river channels, low-lying floodplains, poor drainage systems, and human interventions that restrict water flow. Key Factors Affecting Flooding 1. Upslope Factors (Flood Generation and Runoff Acceleration) Large Watershed Area: A bigger catchment area collects more rainfall, increasing water flow into rivers and raising flood risk. Steep Slopes: Rapid runoff from steep terrain leads to sudden surges in river levels, giving less time for infiltration. Soil Type and Vegetation Cover: ...

Role of Geography in Disaster Management

Geography plays a pivotal role in disaster management by facilitating an understanding of the impact of natural disasters, guiding preparedness efforts, and supporting effective response and recovery. By analyzing geographical features, environmental conditions, and historical data, geography empowers disaster management professionals to identify risks, plan for hazards, respond to emergencies, assess damage, and monitor recovery. Geographic Information Systems (GIS) serve as crucial tools, providing critical spatial data for informed decision-making throughout the disaster management cycle. Key Concepts, Terminologies, and Examples 1. Identifying Risk: Concept: Risk identification involves analyzing geographical areas to understand their susceptibility to specific natural disasters. By studying historical events, topography, climate patterns, and environmental factors, disaster management experts can predict which regions are most vulnerable. Terminologies: Hazard Risk: The pr...