Skip to main content

Cyclone


1. Low-Pressure System

A low-pressure system is an area where the atmospheric pressure is lower than its surroundings. These systems are associated with rising warm air, which leads to cloud formation and precipitation. They are the primary drivers of weather disturbances like cyclones and storms.

  • Concept: Warm air rises, creating a region of lower pressure at the surface. As air converges to fill this void, it starts to rotate due to the Coriolis effect.
  • Example: A monsoon low-pressure system forming over the Bay of Bengal, leading to heavy rains in eastern India.

2. Depression

A depression is a more developed form of a low-pressure system with a well-defined circulation. It brings moderate to heavy rainfall and gusty winds.

  • Concept: When a low-pressure system intensifies with wind speeds between 31-49 km/h, it is classified as a depression.
  • Example: The depression over the Arabian Sea that causes heavy rainfall in Mumbai during the monsoon season.

3. Deep Depression

A deep depression is a further intensification of a depression with stronger winds and heavier rainfall.

  • Concept: A depression becomes a deep depression when wind speeds increase to 50-61 km/h. This stage is a precursor to a tropical storm or cyclone.
  • Example: A deep depression forming over the Bay of Bengal, later developing into Cyclone Yaas in 2021.

4. Cyclone

A cyclone is a large-scale air mass that rotates around a strong center of low atmospheric pressure. It is classified into different categories based on wind speed.

  • Concept: A cyclone forms when a deep depression further intensifies, with wind speeds exceeding 62 km/h. Warm ocean waters provide energy, causing rapid intensification.
  • Types of Cyclones:
    • Tropical Cyclones: Form over warm ocean waters (e.g., Cyclone Amphan in 2020).
    • Extratropical Cyclones: Occur outside tropical regions and are associated with frontal systems (e.g., Nor'easters in the U.S.).

5. Storm

A storm is a general term for a disturbed state of the atmosphere that can bring strong winds, heavy rain, thunder, lightning, and sometimes snow.

  • Concept: When wind speeds reach 62-88 km/h, the system is called a "Cyclonic Storm." If it intensifies further, it may become a Severe Cyclonic Storm (89-117 km/h) or even a Super Cyclone (>222 km/h).
  • Example: Cyclone Fani (2019) was classified as an Extremely Severe Cyclonic Storm with wind speeds exceeding 250 km/h, causing significant destruction in Odisha, India.

Wind Speed Classifications

System TypeWind Speed (km/h)
Low Pressure< 31
Depression31-49
Deep Depression50-61
Cyclonic Storm62-88
Severe Cyclonic Storm89-117
Very Severe Cyclonic Storm118-165
Extremely Severe Cyclonic Storm166-221
Super Cyclone> 222

Comments

Popular posts from this blog

Platforms in Remote Sensing

In remote sensing, a platform is the physical structure or vehicle that carries a sensor (camera, scanner, radar, etc.) to observe and collect information about the Earth's surface. Platforms are classified mainly by their altitude and mobility : Ground-Based Platforms Definition : Sensors mounted on the Earth's surface or very close to it. Examples : Tripods, towers, ground vehicles, handheld instruments. Applications : Calibration and validation of satellite data Detailed local studies (e.g., soil properties, vegetation health, air quality) Strength : High spatial detail but limited coverage. Airborne Platforms Definition : Sensors carried by aircraft, balloons, or drones (UAVs). Altitude : A few hundred meters to ~20 km. Examples : Airplanes with multispectral scanners UAVs with high-resolution cameras or LiDAR High-altitude balloons (stratospheric platforms) Applications : Local-to-regional mapping ...

Optical Sensors in Remote Sensing

1. What Are Optical Sensors? Optical sensors are remote sensing instruments that detect solar radiation reflected or emitted from the Earth's surface in specific portions of the electromagnetic spectrum (EMS) . They mainly work in: Visible region (0.4–0.7 ยตm) Near-Infrared – NIR (0.7–1.3 ยตm) Shortwave Infrared – SWIR (1.3–3.0 ยตm) Thermal Infrared – TIR (8–14 ยตm) — emitted energy, not reflected Optical sensors capture spectral signatures of surface features. Each object reflects/absorbs energy differently, creating a unique spectral response pattern . a) Electromagnetic Spectrum (EMS) The continuous range of wavelengths. Optical sensing uses solar reflective bands and sometimes thermal bands . b) Spectral Signature The unique pattern of reflectance or absorbance of an object across wavelengths. Example: Vegetation reflects strongly in NIR Water absorbs strongly in NIR and SWIR (appears dark) c) Radiance and Reflectance Radi...

Types of Remote Sensing

Remote Sensing means collecting information about the Earth's surface without touching it , usually using satellites, aircraft, or drones . There are different types of remote sensing based on the energy source and the wavelength region used. ๐Ÿ›ฐ️ 1. Active Remote Sensing ๐Ÿ“˜ Concept: In active remote sensing , the sensor sends out its own energy (like a signal or pulse) to the Earth's surface. The sensor then records the reflected or backscattered energy that comes back from the surface. ⚙️ Key Terminology: Transmitter: sends energy (like a radar pulse or laser beam). Receiver: detects the energy that bounces back. Backscatter: energy that is reflected back to the sensor. ๐Ÿ“Š Examples of Active Sensors: RADAR (Radio Detection and Ranging): Uses microwave signals to detect surface roughness, soil moisture, or ocean waves. LiDAR (Light Detection and Ranging): Uses laser light (near-infrared) to measure elevation, vegetation...

Resolution of Sensors in Remote Sensing

Spatial Resolution ๐Ÿ—บ️ Definition : The smallest size of an object on the ground that a sensor can detect. Measured as : The size of a pixel on the ground (in meters). Example : Landsat → 30 m (each pixel = 30 × 30 m on Earth). WorldView-3 → 0.31 m (very detailed, you can see cars). Fact : Higher spatial resolution = finer details, but smaller coverage. Spectral Resolution ๐ŸŒˆ Definition : The ability of a sensor to capture information in different parts (bands) of the electromagnetic spectrum . Measured as : The number and width of spectral bands. Types : Panchromatic (1 broad band, e.g., black & white image). Multispectral (several broad bands, e.g., Landsat with 7–13 bands). Hyperspectral (hundreds of very narrow bands, e.g., AVIRIS). Fact : Higher spectral resolution = better identification of materials (e.g., minerals, vegetation types). Radiometric Resolution ๐Ÿ“Š Definition : The ability of a sensor to ...

Radar Sensors in Remote Sensing

Radar sensors are active remote sensing instruments that use microwave radiation to detect and measure Earth's surface features. They transmit their own energy (radio waves) toward the Earth and record the backscattered signal that returns to the sensor. Since they do not depend on sunlight, radar systems can collect data: day or night through clouds, fog, smoke, and rain in all weather conditions This makes radar extremely useful for Earth observation. 1. Active Sensor A radar sensor produces and transmits its own microwaves. This is different from optical and thermal sensors, which depend on sunlight or emitted heat. 2. Microwave Region Radar operates in the microwave region of the electromagnetic spectrum , typically from 1 mm to 1 m wavelength. Common radar frequency bands: P-band (70 cm) L-band (23 cm) S-band (9 cm) C-band (5.6 cm) X-band (3 cm) Each band penetrates and interacts with surfaces differently: Lo...