Skip to main content

Cyclone


1. Low-Pressure System

A low-pressure system is an area where the atmospheric pressure is lower than its surroundings. These systems are associated with rising warm air, which leads to cloud formation and precipitation. They are the primary drivers of weather disturbances like cyclones and storms.

  • Concept: Warm air rises, creating a region of lower pressure at the surface. As air converges to fill this void, it starts to rotate due to the Coriolis effect.
  • Example: A monsoon low-pressure system forming over the Bay of Bengal, leading to heavy rains in eastern India.

2. Depression

A depression is a more developed form of a low-pressure system with a well-defined circulation. It brings moderate to heavy rainfall and gusty winds.

  • Concept: When a low-pressure system intensifies with wind speeds between 31-49 km/h, it is classified as a depression.
  • Example: The depression over the Arabian Sea that causes heavy rainfall in Mumbai during the monsoon season.

3. Deep Depression

A deep depression is a further intensification of a depression with stronger winds and heavier rainfall.

  • Concept: A depression becomes a deep depression when wind speeds increase to 50-61 km/h. This stage is a precursor to a tropical storm or cyclone.
  • Example: A deep depression forming over the Bay of Bengal, later developing into Cyclone Yaas in 2021.

4. Cyclone

A cyclone is a large-scale air mass that rotates around a strong center of low atmospheric pressure. It is classified into different categories based on wind speed.

  • Concept: A cyclone forms when a deep depression further intensifies, with wind speeds exceeding 62 km/h. Warm ocean waters provide energy, causing rapid intensification.
  • Types of Cyclones:
    • Tropical Cyclones: Form over warm ocean waters (e.g., Cyclone Amphan in 2020).
    • Extratropical Cyclones: Occur outside tropical regions and are associated with frontal systems (e.g., Nor'easters in the U.S.).

5. Storm

A storm is a general term for a disturbed state of the atmosphere that can bring strong winds, heavy rain, thunder, lightning, and sometimes snow.

  • Concept: When wind speeds reach 62-88 km/h, the system is called a "Cyclonic Storm." If it intensifies further, it may become a Severe Cyclonic Storm (89-117 km/h) or even a Super Cyclone (>222 km/h).
  • Example: Cyclone Fani (2019) was classified as an Extremely Severe Cyclonic Storm with wind speeds exceeding 250 km/h, causing significant destruction in Odisha, India.

Wind Speed Classifications

System TypeWind Speed (km/h)
Low Pressure< 31
Depression31-49
Deep Depression50-61
Cyclonic Storm62-88
Severe Cyclonic Storm89-117
Very Severe Cyclonic Storm118-165
Extremely Severe Cyclonic Storm166-221
Super Cyclone> 222

Comments

Popular posts from this blog

Geography of Landslides. Mitigation and Resilience.

A landslide is a geological event in which a mass of rock, earth, or debris moves down a slope under the force of gravity. Landslides can range in size from small to large and can be triggered by natural events such as heavy rainfall, earthquakes, or volcanic activity, or by human activities such as construction or mining. The geography of landslides is affected by a variety of factors that can increase the likelihood of landslides occurring in a particular area. These factors include slope angle and steepness, the type of soil and rock present, the climate and weather patterns of the region, the presence or absence of vegetation, and human activities such as construction, mining, and deforestation. Areas with steep slopes are more prone to landslides because gravity has a stronger effect on loose soil and rock, making it more likely to move downhill. Similarly, areas with loose, sandy soil or weak, fractured rock are more prone to landslides because they are less stable and more easil...

Flood prone regions India

Floods are natural disasters characterized by the overflow of water onto normally dry land. Various factors contribute to floods, including intense rainfall, rapid snowmelt, storm surges from coastal storms, and the failure of dams or levees. The geographical explanation involves understanding the key components of flood-prone regions: 1. Proximity to Water Bodies:    Flood-prone regions are often situated near rivers, lakes, or coastal areas. These locations are more susceptible to flooding as they are in close proximity to large water sources that can overflow during heavy precipitation or storms. 2. Topography:    Low-lying areas with gentle slopes are prone to flooding. Water naturally flows to lower elevations, and flat terrains allow water to accumulate easily. Valleys and floodplains are common flood-prone areas due to their topographical characteristics. 3. Rainfall Patterns:    Regions with high and concentrated rainfall are more likely to experience flooding. Intense and prol...

Geography of Flood. Types. Charector.

The geography of floods refers to the characteristics and patterns of floods in different geographic regions. Floods can occur in various landscapes, such as mountains, plains, coastal areas, and urban environments. The geography of a region plays a significant role in determining the frequency, magnitude, and impacts of floods. Some of the factors that influence the geography of floods include: Topography: The shape and elevation of the land can affect the flow and accumulation of water during a flood. For example, flat terrain can lead to slow-moving and widespread flooding, while steep slopes can result in flash floods and landslides. Climate: Regions with high rainfall or snowmelt can experience more frequent and intense floods, while dry regions may experience flash floods due to sudden, heavy rainfall. Hydrology: The characteristics of a river basin, such as its size, shape, and water flow, can influence the severity of a flood. For example, large river basins with extensive floo...

Landslides. USGS

Landslides. TYPES OF LANDSLIDES The term "landslide" describes a wide variety of processes that result in the downward and outward movement of slope-forming materials including rock, soil, artificial fill, or a combination of these. The materials may move by falling, toppling, sliding, spreading, or flowing. The animated GIF shows a graphic illustration of different types of landslides, with the commonly accepted terminology describing their features. The various types of landslides can be differentiated by the kinds of material involved and the mode of movement.

Prevention and Mitigation

In disaster management, prevention and mitigation are two fundamental strategies aimed at reducing disaster risks and their potential impacts. While both are proactive measures, they differ in scope and approach. 1. Prevention Prevention refers to measures taken to avoid or completely eliminate the occurrence of a disaster. It focuses on long-term strategies to ensure that hazards do not turn into disasters. Hazard Prevention – Actions taken to remove or reduce the presence of hazards (e.g., banning construction in earthquake-prone zones). Structural Prevention – Engineering solutions designed to eliminate hazards (e.g., building dams to prevent floods). Non-Structural Prevention – Policies, land-use regulations, and awareness campaigns to avoid exposure to hazards. Disaster Risk Reduction (DRR) – The systematic approach to identifying, assessing, and reducing risks of disasters. Zero Risk Approach – The idealistic goal of completely eliminating disaster risks, thoug...