Skip to main content

Approaches of Surface Water Management: Watershed-Based Approaches

Surface water management refers to the strategies used to regulate and optimize the availability, distribution, and quality of surface water resources such as rivers, lakes, and reservoirs. One of the most effective strategies is the watershed-based approach, which considers the entire watershed or drainage basin as a unit for water resource management, ensuring sustainability and minimizing conflicts between upstream and downstream users.


1. Watershed-Based Approaches

Watershed

A watershed (or drainage basin) is a geographical area where all precipitation and surface runoff flow into a common outlet such as a river, lake, or ocean.

  • Example: The Ganga River Basin is a watershed that drains into the Bay of Bengal.

Hydrological Cycle and Watershed Management

Watershed-based approaches work by managing the hydrological cycle, which involves precipitation, infiltration, runoff, evapotranspiration, and groundwater recharge.

  • Precipitation: Rainfall or snowfall within a watershed.
  • Runoff: Water that flows over land into streams, lakes, or reservoirs.
  • Infiltration: Water absorbed by the soil, which recharges groundwater.
  • Evapotranspiration: Water loss from surfaces and vegetation.

2. Key Approaches in Watershed-Based Surface Water Management

A. Integrated Watershed Management (IWM)

This approach integrates land, water, and biodiversity management to ensure sustainable water availability.

Key Strategies:

  • Afforestation & Reforestation: Increases infiltration and reduces soil erosion.

  • Soil Conservation Techniques: Check dams, contour bunding, and terracing help in retaining water and preventing runoff.

  • Community Participation: Engaging local communities for sustainable water management.

  • Example: The Sukhomajri Watershed Project in India implemented soil and water conservation measures, leading to improved water availability and agricultural productivity.


B. River Basin Management

Focuses on managing water resources at the river basin level to ensure equitable distribution and conflict resolution between users.

Key Strategies:

  • Upstream and Downstream Coordination: Prevents water conflicts between different regions.

  • Flow Regulation: Dams and reservoirs help regulate water availability.

  • Water Quality Monitoring: Prevents industrial pollution and ensures safe drinking water.

  • Example: The Ganga Action Plan (GAP) aims to improve the water quality of the Ganga River by controlling pollution and promoting sustainable watershed management.


C. Participatory Watershed Development

Encourages stakeholder involvement, including farmers, industries, and local governments, in decision-making.

Key Strategies:

  • Rainwater Harvesting: Collection and storage of rainwater for agricultural and domestic use.

  • Livelihood-Based Interventions: Ensuring that watershed management also benefits local communities.

  • Micro-Watershed Approach: Dividing large watersheds into smaller units for efficient management.

  • Example: The Jal Shakti Abhiyan in India promotes community-led water conservation efforts, including rainwater harvesting and watershed rejuvenation.


D. Eco-Hydrological Approach

Focuses on maintaining the natural ecological balance of watersheds while managing water resources.

Key Strategies:

  • Wetland Conservation: Protects wetlands that act as natural water filters.

  • Sustainable Land Use Planning: Prevents deforestation and urban encroachment on water bodies.

  • Groundwater-Surface Water Interaction Management: Ensures sustainable groundwater recharge.

  • Example: The Ramsar Convention aims to protect wetland ecosystems worldwide, ensuring their role in water purification and flood control.

Comments

Popular posts from this blog

Natural Disasters

A natural disaster is a catastrophic event caused by natural processes of the Earth that results in significant loss of life, property, and environmental resources. It occurs when a hazard (potentially damaging physical event) interacts with a vulnerable population and leads to disruption of normal life . Key terms: Hazard → A potential natural event (e.g., cyclone, earthquake). Disaster → When the hazard causes widespread damage due to vulnerability. Risk → Probability of harmful consequences from interaction of hazard and vulnerability. Vulnerability → Degree to which a community or system is exposed and unable to cope with the hazard. Resilience → Ability of a system or society to recover from the disaster impact. 👉 Example: An earthquake in an uninhabited desert is a hazard , but not a disaster unless people or infrastructure are affected. Types Natural disasters can be classified into geophysical, hydrological, meteorological, clim...

Types of Remote Sensing

Remote Sensing means collecting information about the Earth's surface without touching it , usually using satellites, aircraft, or drones . There are different types of remote sensing based on the energy source and the wavelength region used. 🛰️ 1. Active Remote Sensing 📘 Concept: In active remote sensing , the sensor sends out its own energy (like a signal or pulse) to the Earth's surface. The sensor then records the reflected or backscattered energy that comes back from the surface. ⚙️ Key Terminology: Transmitter: sends energy (like a radar pulse or laser beam). Receiver: detects the energy that bounces back. Backscatter: energy that is reflected back to the sensor. 📊 Examples of Active Sensors: RADAR (Radio Detection and Ranging): Uses microwave signals to detect surface roughness, soil moisture, or ocean waves. LiDAR (Light Detection and Ranging): Uses laser light (near-infrared) to measure elevation, vegetation...

geostationary and sun-synchronous

Orbital characteristics of Remote sensing satellite geostationary and sun-synchronous  Orbits in Remote Sensing Orbit = the path a satellite follows around the Earth. The orbit determines what part of Earth the satellite can see , how often it revisits , and what applications it is good for . Remote sensing satellites mainly use two standard orbits : Geostationary Orbit (GEO) Sun-Synchronous Orbit (SSO)  Geostationary Satellites (GEO) Characteristics Altitude : ~35,786 km above the equator. Period : 24 hours → same as Earth's rotation. Orbit type : Circular, directly above the equator . Appears "stationary" over one fixed point on Earth. Concepts & Terminologies Geosynchronous = orbit period matches Earth's rotation (24h). Geostationary = special type of geosynchronous orbit directly above equator → looks fixed. Continuous coverage : Can monitor the same area all the time. Applications Weather...

Linear Arrays Along-Track Scanners or Pushbroom Scanners

Multispectral Imaging Using Linear Arrays (Along-Track Scanners or Pushbroom Scanners) Multispectral Imaging: As previously defined, this involves capturing images using multiple sensors that are sensitive to different wavelengths of electromagnetic radiation. Linear Array of Detectors (A): This refers to a row of discrete detectors arranged in a straight line. Each detector is responsible for measuring the radiation within a specific wavelength band. Focal Plane (B): This is the plane where the image is formed by the lens system. It is the location where the detectors are placed to capture the focused image. Formed by Lens Systems (C): The lens system is responsible for collecting and focusing the incoming radiation onto the focal plane. It acts like a camera lens, creating a sharp image of the scene. Ground Resolution Cell (D): As previously defined, this is the smallest area on the ground that can be resolved by a remote sensing sensor. In the case of linear array scanne...

India remote sensing

1. Foundational Phase (Early 1970s – Early 1980s) Objective: To explore the potential of space-based observation for national development. 1972: The Space Applications Programme (SAP) was initiated by the Indian Space Research Organisation (ISRO), focusing on applying space technology for societal benefits. 1975: The Department of Space (DoS) was established, providing an institutional base for space applications, including remote sensing. 1977: India began aerial and balloon-borne experiments to study Earth resources and assess how remote sensing data could aid in agriculture, forestry, and hydrology. 1978 (June 7): Bhaskara-I launched by the Soviet Union — India's first experimental Earth Observation satellite . Payloads: TV cameras (for land and ocean surface observation) and a Microwave Radiometer. Significance: Proved that satellite-based Earth observation was feasible for India's needs. 1981 (November 20): Bhaskara-II launche...