Skip to main content

Traditional Water Harvesting, Storage, and Management in Northern India


Northern India has a rich tradition of water harvesting practices designed to adapt to regional climatic conditions and water availability. These methods, rooted in local knowledge and community efforts, focus on capturing and storing rainwater efficiently to combat water scarcity and ensure sustainability.


Key Concepts, Terminologies, and Examples

  1. Rooftop Rainwater Collection

    • Definition: Rainwater is collected from rooftops and directed into underground tanks or surface storage systems.
    • Example: Taankas in Rajasthan, which are cylindrical underground tanks, store rooftop rainwater for household use.
  2. Surface Runoff Collection

    • Definition: Rainwater flowing over slopes or fields is diverted into small ponds or tanks using earthen structures.
    • Example: Naadas (earthen bunds) channel runoff water into small reservoirs for irrigation.
  3. Stepwells (Bawdis)

    • Definition: Deep wells with steps descending to the water table, providing access to groundwater during dry seasons.
    • Example: The Chand Baori in Rajasthan is a famous stepwell showcasing intricate architecture and utility.
  4. Community Ponds (Johads)

    • Definition: Ponds built and maintained by communities to store rainwater for irrigation and drinking.
    • Example: Johads in Alwar, Rajasthan, have helped restore groundwater levels and revive agricultural activities.
  5. Talabs/Bandhis (Reservoirs)

    • Definition: Large water bodies with earthen embankments designed to store rainwater for various uses.
    • Example: Talabs in Uttar Pradesh are used extensively for irrigation during dry spells.
  6. Ahar Pynes (Floodwater Harvesting)

    • Definition: A dual system of floodwater diversion and storage channels designed for irrigation.
    • Example: Predominantly used in Bihar and eastern Uttar Pradesh, floodwaters from rivers are diverted into Ahars (reservoirs) and Pynes (channels).

Regional Variations in Traditional Practices

  1. Rajasthan

    • Climate: Arid and semi-arid.
    • Practices:
      • Taankas: Widely used for rooftop rainwater harvesting.
      • Bawdis: Provide access to groundwater in drought-prone areas.
      • Johads: Built to recharge groundwater and store water.
  2. Uttar Pradesh

    • Climate: Sub-tropical plains with seasonal rainfall.
    • Practices:
      • Talabs: Large reservoirs for irrigation and floodwater storage.
      • Ahar Pynes: Manage seasonal flooding and ensure irrigation.

Benefits of Traditional Water Harvesting Systems

  1. Groundwater Recharge

    • Concept: Percolation of rainwater into the soil raises the water table.
    • Example: Johads in Rajasthan significantly improved groundwater levels.
  2. Sustainable Water Source

    • Concept: These systems provide a reliable supply during dry periods for drinking, agriculture, and livestock.
    • Example: Stepwells (Bawdis) in Gujarat and Rajasthan offered water security during prolonged droughts.
  3. Flood Control

    • Concept: Managing surface runoff reduces the risk of floods in low-lying areas.
    • Example: Ahar Pynes in Bihar manage monsoon floodwaters effectively.
  4. Community Involvement

    • Concept: Collaborative maintenance and construction of water systems strengthen community ties.
    • Example: Johads in Alwar were restored through community participation under water conservation campaigns.


Comments

Popular posts from this blog

History of GIS

1. 1832 - Early Spatial Analysis in Epidemiology:    - Charles Picquet creates a map in Paris detailing cholera deaths per 1,000 inhabitants.    - Utilizes halftone color gradients for visual representation. 2. 1854 - John Snow's Cholera Outbreak Analysis:    - Epidemiologist John Snow identifies cholera outbreak source in London using spatial analysis.    - Maps casualties' residences and nearby water sources to pinpoint the outbreak's origin. 3. Early 20th Century - Photozincography and Layered Mapping:    - Photozincography development allows maps to be split into layers for vegetation, water, etc.    - Introduction of layers, later a key feature in GIS, for separate printing plates. 4. Mid-20th Century - Computer Facilitation of Cartography:    - Waldo Tobler's 1959 publication details using computers for cartography.    - Computer hardware development, driven by nuclear weapon research, leads to broader mapping applications by early 1960s. 5. 1960 - Canada Geograph...

Supervised Classification

Image Classification in Remote Sensing Image classification in remote sensing involves categorizing pixels in an image into thematic classes to produce a map. This process is essential for land use and land cover mapping, environmental studies, and resource management. The two primary methods for classification are Supervised and Unsupervised Classification . Here's a breakdown of these methods and the key stages of image classification. 1. Types of Classification Supervised Classification In supervised classification, the analyst manually defines classes of interest (known as information classes ), such as "water," "urban," or "vegetation," and identifies training areas —sections of the image that are representative of these classes. Using these training areas, the algorithm learns the spectral characteristics of each class and applies them to classify the entire image. When to Use Supervised Classification:   - You have prior knowledge about the c...

History of GIS

The history of Geographic Information Systems (GIS) is rooted in early efforts to understand spatial relationships and patterns, long before the advent of digital computers. While modern GIS emerged in the mid-20th century with advances in computing, its conceptual foundations lie in cartography, spatial analysis, and thematic mapping. Early Roots of Spatial Analysis (Pre-1960s) One of the earliest documented applications of spatial analysis dates back to  1832 , when  Charles Picquet , a French geographer and cartographer, produced a cholera mortality map of Paris. In his report  Rapport sur la marche et les effets du cholĂ©ra dans Paris et le dĂ©partement de la Seine , Picquet used graduated color shading to represent cholera deaths per 1,000 inhabitants across 48 districts. This work is widely regarded as an early example of choropleth mapping and thematic cartography applied to epidemiology. A landmark moment in the history of spatial analysis occurred in  1854 , when  John Snow  inv...

Pre During and Post Disaster

Disaster management is a structured approach aimed at reducing risks, responding effectively, and ensuring a swift recovery from disasters. It consists of three main phases: Pre-Disaster (Mitigation & Preparedness), During Disaster (Response), and Post-Disaster (Recovery). These phases involve various strategies, policies, and actions to protect lives, property, and the environment. Below is a breakdown of each phase with key concepts, terminologies, and examples. 1. Pre-Disaster Phase (Mitigation and Preparedness) Mitigation: This phase focuses on reducing the severity of a disaster by minimizing risks and vulnerabilities. It involves structural and non-structural measures. Hazard Identification: Recognizing potential natural and human-made hazards (e.g., earthquakes, floods, industrial accidents). Risk Assessment: Evaluating the probability and consequences of disasters using GIS, remote sensing, and historical data. Vulnerability Analysis: Identifying areas and p...

Representation of Spatial and Temporal Relationships

In GIS, spatial and temporal relationships allow the integration of location (the "where") and time (the "when") to analyze phenomena across space and time. This combination is fundamental to studying dynamic processes such as urban growth, land-use changes, or natural disasters. Key Concepts and Terminologies Geographic Coordinates : Define the position of features on Earth using latitude, longitude, or other coordinate systems. Example: A building's location can be represented as (11.6994° N, 76.0773° E). Timestamp : Represents the temporal aspect of data, such as the date or time a phenomenon was observed. Example: A landslide occurrence recorded on 30/07/2024 . Spatial and Temporal Relationships : Describes how features relate in space and time. These relationships can be: Spatial : Topological (e.g., "intersects"), directional (e.g., "north of"), or proximity-based (e.g., "near"). Temporal : Sequential (e....