Skip to main content

Spatial Entity and Spatial Object


Concepts

  1. Spatial Entity:
    Refers to any real-world feature or phenomenon that exists in a specific location and can be identified in space. This emphasizes the actual physical or conceptual presence of the feature.

  2. Spatial Object:
    Represents the digital or computational representation of a spatial entity within a Geographic Information System (GIS). This includes its geometry (e.g., points, lines, polygons) and associated attributes.

Key Distinction:
While the terms are often interchangeable, spatial entity tends to focus on the real-world phenomenon, whereas spatial object highlights its representation in GIS.


Key Terminologies

  1. Geographic Coordinates:
    Define the location of spatial entities using a coordinate system (e.g., latitude and longitude).

    • Example: A building at 40.748817° N, 73.985428° W.
  2. Geometry Types:

    • Point: Represents a single location (e.g., a well or a bus stop).
    • Line: Represents linear features (e.g., roads, rivers).
    • Polygon: Represents areas (e.g., lakes, parks, city boundaries).
  3. Attributes:
    Descriptive data linked to spatial objects. For instance, a city boundary polygon might have attributes like population, area, and administrative code.

  4. Topology:
    Defines the spatial relationships between objects, such as adjacency (two polygons sharing a boundary) or connectivity (how roads are linked).


Representation in GIS

  1. Spatial Entity:

    • A river in the real world flowing across a landscape.
    • A building that occupies a fixed area in a city.
  2. Spatial Object:

    • A river represented as a line in a GIS database.
    • A building represented as a polygon in GIS software.

Example Scenarios

  1. City Park:

    • Spatial Entity: The actual physical park with trees, walking paths, and open spaces.
    • Spatial Object: The polygon in GIS that represents the park's boundary with attributes like area, park name, and type.
  2. Road Network:

    • Spatial Entity: The actual roads connecting different locations.
    • Spatial Object: The lines in GIS, with attributes like road type, name, and length.
  3. River:

    • Spatial Entity: The actual water body flowing through a region.
    • Spatial Object: The line in GIS representing the river, with attributes like flow rate and name.
  4. Land Parcel:

    • Spatial Entity: A physical plot of land.
    • Spatial Object: The polygon in GIS representing the parcel's shape, location, and attributes like owner name, land use, and area.

Importance in GIS

  1. Analysis:
    Spatial objects enable analysis such as calculating distances (e.g., from a school to a hospital) or determining areas (e.g., forest cover).

  2. Visualization:
    GIS allows the representation of spatial entities as objects on maps for better understanding and communication of spatial patterns.

  3. Integration:
    Spatial objects can be combined with non-spatial data (e.g., census statistics) to perform complex analyses like population density mapping.

  4. Decision-Making:
    Spatial entities/objects provide critical information for urban planning, disaster management, and environmental monitoring.




Comments

Popular posts from this blog

Platforms in Remote Sensing

In remote sensing, a platform is the physical structure or vehicle that carries a sensor (camera, scanner, radar, etc.) to observe and collect information about the Earth's surface. Platforms are classified mainly by their altitude and mobility : Ground-Based Platforms Definition : Sensors mounted on the Earth's surface or very close to it. Examples : Tripods, towers, ground vehicles, handheld instruments. Applications : Calibration and validation of satellite data Detailed local studies (e.g., soil properties, vegetation health, air quality) Strength : High spatial detail but limited coverage. Airborne Platforms Definition : Sensors carried by aircraft, balloons, or drones (UAVs). Altitude : A few hundred meters to ~20 km. Examples : Airplanes with multispectral scanners UAVs with high-resolution cameras or LiDAR High-altitude balloons (stratospheric platforms) Applications : Local-to-regional mapping ...

Types of Remote Sensing

Remote Sensing means collecting information about the Earth's surface without touching it , usually using satellites, aircraft, or drones . There are different types of remote sensing based on the energy source and the wavelength region used. 🛰️ 1. Active Remote Sensing 📘 Concept: In active remote sensing , the sensor sends out its own energy (like a signal or pulse) to the Earth's surface. The sensor then records the reflected or backscattered energy that comes back from the surface. ⚙️ Key Terminology: Transmitter: sends energy (like a radar pulse or laser beam). Receiver: detects the energy that bounces back. Backscatter: energy that is reflected back to the sensor. 📊 Examples of Active Sensors: RADAR (Radio Detection and Ranging): Uses microwave signals to detect surface roughness, soil moisture, or ocean waves. LiDAR (Light Detection and Ranging): Uses laser light (near-infrared) to measure elevation, vegetation...

Resolution of Sensors in Remote Sensing

Spatial Resolution 🗺️ Definition : The smallest size of an object on the ground that a sensor can detect. Measured as : The size of a pixel on the ground (in meters). Example : Landsat → 30 m (each pixel = 30 × 30 m on Earth). WorldView-3 → 0.31 m (very detailed, you can see cars). Fact : Higher spatial resolution = finer details, but smaller coverage. Spectral Resolution 🌈 Definition : The ability of a sensor to capture information in different parts (bands) of the electromagnetic spectrum . Measured as : The number and width of spectral bands. Types : Panchromatic (1 broad band, e.g., black & white image). Multispectral (several broad bands, e.g., Landsat with 7–13 bands). Hyperspectral (hundreds of very narrow bands, e.g., AVIRIS). Fact : Higher spectral resolution = better identification of materials (e.g., minerals, vegetation types). Radiometric Resolution 📊 Definition : The ability of a sensor to ...

geostationary and sun-synchronous

Orbital characteristics of Remote sensing satellite geostationary and sun-synchronous  Orbits in Remote Sensing Orbit = the path a satellite follows around the Earth. The orbit determines what part of Earth the satellite can see , how often it revisits , and what applications it is good for . Remote sensing satellites mainly use two standard orbits : Geostationary Orbit (GEO) Sun-Synchronous Orbit (SSO)  Geostationary Satellites (GEO) Characteristics Altitude : ~35,786 km above the equator. Period : 24 hours → same as Earth's rotation. Orbit type : Circular, directly above the equator . Appears "stationary" over one fixed point on Earth. Concepts & Terminologies Geosynchronous = orbit period matches Earth's rotation (24h). Geostationary = special type of geosynchronous orbit directly above equator → looks fixed. Continuous coverage : Can monitor the same area all the time. Applications Weather...

Man-Made Disasters

  A man-made disaster (also called a technological disaster or anthropogenic disaster ) is a catastrophic event caused directly or indirectly by human actions , rather than natural processes. These disasters arise due to negligence, error, industrial activity, conflict, or misuse of technology , and often result in loss of life, property damage, and environmental degradation . Terminology: Anthropogenic = originating from human activity. Technological hazard = hazard caused by failure or misuse of technology or industry. 🔹 Conceptual Understanding Man-made disasters are part of the Disaster Management Cycle , which includes: Prevention – avoiding unsafe practices. Mitigation – reducing disaster impact (e.g., safety regulations). Preparedness – training and planning. Response – emergency actions after the disaster. Recovery – long-term rebuilding and policy correction. These disasters are predictable and preventable through strong...