Skip to main content

Sources of spatial data

 Survey Data

Concepts and Terminologies:
Ground Survey: This is the direct measurement of features on the Earth using instruments such as total stations, theodolites, and modern Global Navigation Satellite Systems (GNSS, e.g., GPS).
Control Points: Fixed locations measured with high accuracy; these serve as reference points (or benchmarks) to georeference and tie together spatial datasets.
Coordinate Geometry (COGO): Techniques for calculating distances and angles from measured points, often used in legal and cadastral surveys.

Examples:
• A cadastral survey for establishing property boundaries typically involves collecting precise GNSS coordinates at the corners of parcels.
• Engineering projects rely on survey data to create high-accuracy maps where the relative positions of roads, utilities, and buildings must be known within decimeter or even centimeter accuracy.

Survey data is fundamental in creating the framework for maps and digital elevation models (DEMs) because it ensures that subsequent aerial or remote sensing data can be accurately aligned (georeferenced) with real-world coordinates.


2. Air Photos (Aerial Photography)

Concepts and Terminologies:
Aerial Photography: The process of capturing images from an airborne platform (aircraft, drones, or even kites/balloons).
Vertical vs. Oblique Imagery:
 – Vertical photographs are taken with the camera lens pointed straight down, minimizing distortion and ideal for mapping and photogrammetry.
 – Oblique photographs are taken at an angle, offering a perspective view useful for understanding terrain or structures, though they require additional correction to be used for accurate mapping.
Photogrammetry: The science of extracting 3D measurements from 2D images. This is commonly used to generate digital elevation models (DEMs) and to produce ortho-rectified images (orthophotos) that have been corrected for lens distortion and terrain relief.

Examples:
• Urban planners often use vertical aerial photographs to create up-to-date base maps of a city.
• Archaeologists may use oblique aerial photos to detect subtle crop marks or soil disturbances that reveal hidden archaeological sites.

Air photos provide high-resolution images that are excellent for detailed local mapping and are frequently used as a background in Geographic Information Systems (GIS) for further analysis.


3. Satellite Images

Concepts and Terminologies:
Remote Sensing: The process of collecting information about the Earth from a distance using sensors on satellites or aircraft.
Raster Data: Satellite images are typically stored as raster data (a grid of pixels), where each pixel carries a value representing the reflectance in one or more spectral bands.
Resolution Types:
 – Spatial Resolution: The size of the area each pixel covers on the ground (e.g., 10 m, 30 m).
 – Spectral Resolution: The ability to resolve wavelengths across the electromagnetic spectrum (e.g., multispectral vs. hyperspectral sensors).
 – Temporal Resolution: How frequently a satellite revisits the same location (e.g., every 5 days for Sentinel-2).
 – Radiometric Resolution: The sensor's ability to distinguish differences in energy (often expressed in bits, such as 8-bit or 12-bit).

Examples:
• The Landsat series provides imagery dating back decades at 30 m spatial resolution, making it invaluable for monitoring land use changes over time.
• Sentinel-2 satellites deliver 10 m resolution data in visible and near-infrared bands, suitable for precision agriculture and environmental monitoring.
• High-resolution commercial satellites (like those operated by Maxar) can provide sub-meter imagery useful for urban planning and disaster response.

Satellite images allow for large-area coverage and are indispensable for global monitoring of environmental changes, urban expansion, and natural disasters.


4. Field Data

Concepts and Terminologies:
In-Situ (Field) Data: Direct observations or measurements made on the ground. This includes everything from soil samples and vegetation surveys to geotagged photographs.
Ground Truthing: The process of validating remote sensing data with on-the-ground observations to improve the accuracy of classifications or measurements made from imagery.
Mobile GIS: The use of smartphones, tablets, or specialized devices that collect and sometimes process spatial data in real time during field surveys.

Examples:
• Environmental scientists may collect soil moisture, temperature, and nutrient data from specific sampling sites to validate satellite-derived indices (such as the Normalized Difference Vegetation Index, NDVI).
• Field crews using mobile GIS apps can quickly capture locations and attributes of features (like road conditions or infrastructure status) and update digital maps in real time.

Field data is crucial for both calibrating and validating spatial datasets from other sources. It provides the "ground truth" that ensures remote sensing images, aerial photos, and survey data accurately reflect the conditions on the ground.


Integration in a GIS

A modern GIS often integrates all these sources:
Survey Data provides the high-accuracy framework and control points.
Aerial Photos supply detailed, up-to-date visuals for a specific region.
Satellite Images deliver broad coverage and multi-temporal analysis capabilities.
Field Data offers direct measurements and verification for remote observations.


Comments

Popular posts from this blog

History of GIS

1. 1832 - Early Spatial Analysis in Epidemiology:    - Charles Picquet creates a map in Paris detailing cholera deaths per 1,000 inhabitants.    - Utilizes halftone color gradients for visual representation. 2. 1854 - John Snow's Cholera Outbreak Analysis:    - Epidemiologist John Snow identifies cholera outbreak source in London using spatial analysis.    - Maps casualties' residences and nearby water sources to pinpoint the outbreak's origin. 3. Early 20th Century - Photozincography and Layered Mapping:    - Photozincography development allows maps to be split into layers for vegetation, water, etc.    - Introduction of layers, later a key feature in GIS, for separate printing plates. 4. Mid-20th Century - Computer Facilitation of Cartography:    - Waldo Tobler's 1959 publication details using computers for cartography.    - Computer hardware development, driven by nuclear weapon research, leads to broader mapping applications by early 1960s. 5. 1960 - Canada Geograph...

Supervised Classification

Image Classification in Remote Sensing Image classification in remote sensing involves categorizing pixels in an image into thematic classes to produce a map. This process is essential for land use and land cover mapping, environmental studies, and resource management. The two primary methods for classification are Supervised and Unsupervised Classification . Here's a breakdown of these methods and the key stages of image classification. 1. Types of Classification Supervised Classification In supervised classification, the analyst manually defines classes of interest (known as information classes ), such as "water," "urban," or "vegetation," and identifies training areas —sections of the image that are representative of these classes. Using these training areas, the algorithm learns the spectral characteristics of each class and applies them to classify the entire image. When to Use Supervised Classification:   - You have prior knowledge about the c...

History of GIS

The history of Geographic Information Systems (GIS) is rooted in early efforts to understand spatial relationships and patterns, long before the advent of digital computers. While modern GIS emerged in the mid-20th century with advances in computing, its conceptual foundations lie in cartography, spatial analysis, and thematic mapping. Early Roots of Spatial Analysis (Pre-1960s) One of the earliest documented applications of spatial analysis dates back to  1832 , when  Charles Picquet , a French geographer and cartographer, produced a cholera mortality map of Paris. In his report  Rapport sur la marche et les effets du cholĂ©ra dans Paris et le dĂ©partement de la Seine , Picquet used graduated color shading to represent cholera deaths per 1,000 inhabitants across 48 districts. This work is widely regarded as an early example of choropleth mapping and thematic cartography applied to epidemiology. A landmark moment in the history of spatial analysis occurred in  1854 , when  John Snow  inv...

Representation of Spatial and Temporal Relationships

In GIS, spatial and temporal relationships allow the integration of location (the "where") and time (the "when") to analyze phenomena across space and time. This combination is fundamental to studying dynamic processes such as urban growth, land-use changes, or natural disasters. Key Concepts and Terminologies Geographic Coordinates : Define the position of features on Earth using latitude, longitude, or other coordinate systems. Example: A building's location can be represented as (11.6994° N, 76.0773° E). Timestamp : Represents the temporal aspect of data, such as the date or time a phenomenon was observed. Example: A landslide occurrence recorded on 30/07/2024 . Spatial and Temporal Relationships : Describes how features relate in space and time. These relationships can be: Spatial : Topological (e.g., "intersects"), directional (e.g., "north of"), or proximity-based (e.g., "near"). Temporal : Sequential (e....

GIS: Real World and Representations - Modeling and Maps

Geographic Information Systems (GIS) serve as a bridge between the real world and digital representations of geographic phenomena. These representations allow users to store, analyze, and visualize spatial data for informed decision-making. Two key aspects of GIS in this context are modeling and maps , both of which are used to represent real-world geographic features and phenomena in a structured, analyzable format. Let's delve into these concepts, terminologies, and examples in detail. 1. Real World and Representations in GIS Concept: The real world comprises physical, tangible phenomena, such as landforms, rivers, cities, and infrastructure, as well as more abstract elements like weather patterns, population densities, and traffic flow. GIS allows us to represent these real-world phenomena digitally, enabling spatial analysis, decision-making, and visualization. The representation of the real world in GIS is achieved through various models and maps , which simplify...