Skip to main content

Sources of spatial data

 Survey Data

Concepts and Terminologies:
Ground Survey: This is the direct measurement of features on the Earth using instruments such as total stations, theodolites, and modern Global Navigation Satellite Systems (GNSS, e.g., GPS).
Control Points: Fixed locations measured with high accuracy; these serve as reference points (or benchmarks) to georeference and tie together spatial datasets.
Coordinate Geometry (COGO): Techniques for calculating distances and angles from measured points, often used in legal and cadastral surveys.

Examples:
• A cadastral survey for establishing property boundaries typically involves collecting precise GNSS coordinates at the corners of parcels.
• Engineering projects rely on survey data to create high-accuracy maps where the relative positions of roads, utilities, and buildings must be known within decimeter or even centimeter accuracy.

Survey data is fundamental in creating the framework for maps and digital elevation models (DEMs) because it ensures that subsequent aerial or remote sensing data can be accurately aligned (georeferenced) with real-world coordinates.


2. Air Photos (Aerial Photography)

Concepts and Terminologies:
Aerial Photography: The process of capturing images from an airborne platform (aircraft, drones, or even kites/balloons).
Vertical vs. Oblique Imagery:
 – Vertical photographs are taken with the camera lens pointed straight down, minimizing distortion and ideal for mapping and photogrammetry.
 – Oblique photographs are taken at an angle, offering a perspective view useful for understanding terrain or structures, though they require additional correction to be used for accurate mapping.
Photogrammetry: The science of extracting 3D measurements from 2D images. This is commonly used to generate digital elevation models (DEMs) and to produce ortho-rectified images (orthophotos) that have been corrected for lens distortion and terrain relief.

Examples:
• Urban planners often use vertical aerial photographs to create up-to-date base maps of a city.
• Archaeologists may use oblique aerial photos to detect subtle crop marks or soil disturbances that reveal hidden archaeological sites.

Air photos provide high-resolution images that are excellent for detailed local mapping and are frequently used as a background in Geographic Information Systems (GIS) for further analysis.


3. Satellite Images

Concepts and Terminologies:
Remote Sensing: The process of collecting information about the Earth from a distance using sensors on satellites or aircraft.
Raster Data: Satellite images are typically stored as raster data (a grid of pixels), where each pixel carries a value representing the reflectance in one or more spectral bands.
Resolution Types:
 – Spatial Resolution: The size of the area each pixel covers on the ground (e.g., 10 m, 30 m).
 – Spectral Resolution: The ability to resolve wavelengths across the electromagnetic spectrum (e.g., multispectral vs. hyperspectral sensors).
 – Temporal Resolution: How frequently a satellite revisits the same location (e.g., every 5 days for Sentinel-2).
 – Radiometric Resolution: The sensor's ability to distinguish differences in energy (often expressed in bits, such as 8-bit or 12-bit).

Examples:
• The Landsat series provides imagery dating back decades at 30 m spatial resolution, making it invaluable for monitoring land use changes over time.
• Sentinel-2 satellites deliver 10 m resolution data in visible and near-infrared bands, suitable for precision agriculture and environmental monitoring.
• High-resolution commercial satellites (like those operated by Maxar) can provide sub-meter imagery useful for urban planning and disaster response.

Satellite images allow for large-area coverage and are indispensable for global monitoring of environmental changes, urban expansion, and natural disasters.


4. Field Data

Concepts and Terminologies:
In-Situ (Field) Data: Direct observations or measurements made on the ground. This includes everything from soil samples and vegetation surveys to geotagged photographs.
Ground Truthing: The process of validating remote sensing data with on-the-ground observations to improve the accuracy of classifications or measurements made from imagery.
Mobile GIS: The use of smartphones, tablets, or specialized devices that collect and sometimes process spatial data in real time during field surveys.

Examples:
• Environmental scientists may collect soil moisture, temperature, and nutrient data from specific sampling sites to validate satellite-derived indices (such as the Normalized Difference Vegetation Index, NDVI).
• Field crews using mobile GIS apps can quickly capture locations and attributes of features (like road conditions or infrastructure status) and update digital maps in real time.

Field data is crucial for both calibrating and validating spatial datasets from other sources. It provides the "ground truth" that ensures remote sensing images, aerial photos, and survey data accurately reflect the conditions on the ground.


Integration in a GIS

A modern GIS often integrates all these sources:
Survey Data provides the high-accuracy framework and control points.
Aerial Photos supply detailed, up-to-date visuals for a specific region.
Satellite Images deliver broad coverage and multi-temporal analysis capabilities.
Field Data offers direct measurements and verification for remote observations.


Comments

Popular posts from this blog

Photogrammetry – Types of Photographs

In photogrammetry, aerial photographs are categorized based on camera orientation , coverage , and spectral sensitivity . Below is a breakdown of the major types: 1️⃣ Based on Camera Axis Orientation Type Description Key Feature Vertical Photo Taken with the camera axis pointing directly downward (within 3° of vertical). Used for maps and measurements Oblique Photo Taken with the camera axis tilted away from vertical. Covers more area but with distortions Low Oblique: Horizon not visible High Oblique: Horizon visible 2️⃣ Based on Number of Photos Taken Type Description Single Photo One image taken of an area Stereoscopic Pair Two overlapping photos for 3D viewing and depth analysis Strip or Mosaic Series of overlapping photos covering a long area, useful in mapping large regions 3️⃣ Based on Spectral Sensitivity Type Description Application Panchromatic Captures images in black and white General mapping Infrared (IR) Sensitive to infrared radiation Veget...

Photogrammetry – Geometry of a Vertical Photograph

Photogrammetry is the science of making measurements from photographs, especially for mapping and surveying. When the camera axis is perpendicular (vertical) to the ground, the photo is called a vertical photograph , and its geometry is central to accurate mapping.  Elements of Vertical Photo Geometry In a vertical aerial photograph , the geometry is governed by the central projection principle. Here's how it works: 1. Principal Point (P) The point on the photo where the optical axis of the camera intersects the photo plane. It's the geometric center of the photo. 2. Nadir Point (N) The point on the ground directly below the camera at the time of exposure. Ideally, in a perfect vertical photo, the nadir and principal point coincide. 3. Photo Center (C) Usually coincides with the principal point in a vertical photo. 4. Ground Coordinates (X, Y, Z) Real-world (map) coordinates of objects photographed. 5. Flying Height (H) He...

Raster Data Structure

Raster Data Raster data is like a digital photo made up of small squares called cells or pixels . Each cell shows something about that spot — like how high it is (elevation), how hot it is (temperature), or what kind of land it is (forest, water, etc.). Think of it like a graph paper where each box is colored to show what's there. Key Points What's in the cell? Each cell stores information — for example, "water" or "forest." Where is the cell? The cell's location comes from its place in the grid (like row 3, column 5). We don't need to store its exact coordinates. How Do We Decide a Cell's Value? Sometimes, one cell covers more than one thing (like part forest and part water). To choose one value , we can: Center Point: Use whatever feature is in the middle. Most Area: Use the feature that takes up the most space in the cell. Most Important: Use the most important feature (like a road or well), even if it...

Photogrammetry

Photogrammetry is the science of taking measurements from photographs —especially to create maps, models, or 3D images of objects, land, or buildings. Imagine you take two pictures of a mountain from slightly different angles. Photogrammetry uses those photos to figure out the shape, size, and position of the mountain—just like our eyes do when we see in 3D! Concepts and Terminologies 1. Photograph A picture captured by a camera , either from the ground (terrestrial) or from above (aerial or drone). 2. Stereo Pair Two overlapping photos taken from different angles. When seen together, they help create a 3D effect —just like how two human eyes work. 3. Overlap To get a 3D model, photos must overlap each other: Forward overlap : Between two photos in a flight line (usually 60–70%) Side overlap : Between adjacent flight lines (usually 30–40%) 4. Scale The ratio of the photo size to real-world size. Example: A 1:10,000 scale photo means 1 cm on the photo...

Logical Data Model in GIS

In GIS, a logical data model defines how data is structured and interrelated—independent of how it is physically stored or implemented. It serves as a blueprint for designing databases, focusing on the organization of entities, their attributes, and relationships, without tying them to a specific database technology. Key Features Abstraction : The logical model operates at an abstract level, emphasizing the conceptual structure of data rather than the technical details of storage or implementation. Entity-Attribute Relationships : It identifies key entities (objects or concepts) and their attributes (properties), as well as the logical relationships between them. Business Rules : Business logic is embedded in the model to enforce rules, constraints, and conditions that ensure data consistency and accuracy. Technology Independence : The logical model is platform-agnostic—it is not tied to any specific database system or storage format. Visual Representat...