Skip to main content

Geographic Data Precision and Data Organization

Geographic Data Precision

Definition:
Precision in geographic data refers to the level of detail and exactness of spatial data, including coordinate measurements, attribute values, and scale representation.

Key Concepts and Terminologies:

  • Spatial Resolution: The smallest measurable unit in a dataset. For raster data, it refers to the pixel size (e.g., Sentinel-2 has a 10m resolution for some bands).
  • Positional Accuracy: The closeness of recorded spatial coordinates to their true location (e.g., GPS readings within ±3 meters).
  • Attribute Accuracy: The correctness of non-spatial information (e.g., land cover classification).
  • Temporal Accuracy: The precision of time-related aspects in data, such as timestamps in satellite imagery.
  • Scale Dependence: The relationship between data precision and map scale (e.g., a 1:10,000 scale map has more detailed features than a 1:100,000 map).
  • Error Propagation: The accumulation of inaccuracies when processing spatial data (e.g., errors in digital elevation models affecting watershed analysis).

Example of Geographic Data Precision:

  • A land use/land cover (LULC) map derived from high-resolution imagery (e.g., 5m resolution) will provide more precise details compared to a lower-resolution 30m Landsat image.
  • GPS tracking for wildlife monitoring may record locations with ±5m accuracy, affecting movement pattern analysis.

2. Geographic Data Organization

Definition:
Geographic data organization refers to the systematic structuring, storage, and management of spatial data to ensure efficient retrieval and analysis.

Types of Geographic Data Organization:

  1. Spatial Data Models:

    • Vector Data: Represents discrete features using points, lines, and polygons.
    • Raster Data: Represents continuous surfaces through grid cells (e.g., elevation models).
  2. Database Structures:

    • Flat Files: Simple text or CSV files storing geographic coordinates and attributes.
    • Relational Databases (RDBMS): Uses tables with spatial indexing (e.g., PostgreSQL/PostGIS).
    • NoSQL Databases: For handling unstructured geographic data (e.g., MongoDB with geospatial indexing).
  3. Data Hierarchies:

    • Raw Data → Processed Data → Finalized Datasets
    • Global → National → Regional → Local Datasets
  4. Spatial Indexing & Metadata:

    • Quadtrees & R-trees: Spatial indexing methods for efficient data retrieval.
    • Metadata Standards: FGDC, ISO 19115 ensure proper documentation of spatial datasets.

Example of Geographic Data Organization:

  • In Google Earth Engine (GEE), Sentinel-2 imagery is stored as a raster dataset with bands representing different spectral wavelengths.
  • A city's road network stored in a GIS database may use a vector-based relational structure, where road segments have attributes like speed limits and road types.

Comments

Popular posts from this blog

Types of Remote Sensing

Remote Sensing means collecting information about the Earth's surface without touching it , usually using satellites, aircraft, or drones . There are different types of remote sensing based on the energy source and the wavelength region used. 🛰️ 1. Active Remote Sensing 📘 Concept: In active remote sensing , the sensor sends out its own energy (like a signal or pulse) to the Earth's surface. The sensor then records the reflected or backscattered energy that comes back from the surface. ⚙️ Key Terminology: Transmitter: sends energy (like a radar pulse or laser beam). Receiver: detects the energy that bounces back. Backscatter: energy that is reflected back to the sensor. 📊 Examples of Active Sensors: RADAR (Radio Detection and Ranging): Uses microwave signals to detect surface roughness, soil moisture, or ocean waves. LiDAR (Light Detection and Ranging): Uses laser light (near-infrared) to measure elevation, vegetation...

geostationary and sun-synchronous

Orbital characteristics of Remote sensing satellite geostationary and sun-synchronous  Orbits in Remote Sensing Orbit = the path a satellite follows around the Earth. The orbit determines what part of Earth the satellite can see , how often it revisits , and what applications it is good for . Remote sensing satellites mainly use two standard orbits : Geostationary Orbit (GEO) Sun-Synchronous Orbit (SSO)  Geostationary Satellites (GEO) Characteristics Altitude : ~35,786 km above the equator. Period : 24 hours → same as Earth's rotation. Orbit type : Circular, directly above the equator . Appears "stationary" over one fixed point on Earth. Concepts & Terminologies Geosynchronous = orbit period matches Earth's rotation (24h). Geostationary = special type of geosynchronous orbit directly above equator → looks fixed. Continuous coverage : Can monitor the same area all the time. Applications Weather...

India remote sensing

1. Foundational Phase (Early 1970s – Early 1980s) Objective: To explore the potential of space-based observation for national development. 1972: The Space Applications Programme (SAP) was initiated by the Indian Space Research Organisation (ISRO), focusing on applying space technology for societal benefits. 1975: The Department of Space (DoS) was established, providing an institutional base for space applications, including remote sensing. 1977: India began aerial and balloon-borne experiments to study Earth resources and assess how remote sensing data could aid in agriculture, forestry, and hydrology. 1978 (June 7): Bhaskara-I launched by the Soviet Union — India's first experimental Earth Observation satellite . Payloads: TV cameras (for land and ocean surface observation) and a Microwave Radiometer. Significance: Proved that satellite-based Earth observation was feasible for India's needs. 1981 (November 20): Bhaskara-II launche...

Natural Disasters

A natural disaster is a catastrophic event caused by natural processes of the Earth that results in significant loss of life, property, and environmental resources. It occurs when a hazard (potentially damaging physical event) interacts with a vulnerable population and leads to disruption of normal life . Key terms: Hazard → A potential natural event (e.g., cyclone, earthquake). Disaster → When the hazard causes widespread damage due to vulnerability. Risk → Probability of harmful consequences from interaction of hazard and vulnerability. Vulnerability → Degree to which a community or system is exposed and unable to cope with the hazard. Resilience → Ability of a system or society to recover from the disaster impact. 👉 Example: An earthquake in an uninhabited desert is a hazard , but not a disaster unless people or infrastructure are affected. Types Natural disasters can be classified into geophysical, hydrological, meteorological, clim...

Linear Arrays Along-Track Scanners or Pushbroom Scanners

Multispectral Imaging Using Linear Arrays (Along-Track Scanners or Pushbroom Scanners) Multispectral Imaging: As previously defined, this involves capturing images using multiple sensors that are sensitive to different wavelengths of electromagnetic radiation. Linear Array of Detectors (A): This refers to a row of discrete detectors arranged in a straight line. Each detector is responsible for measuring the radiation within a specific wavelength band. Focal Plane (B): This is the plane where the image is formed by the lens system. It is the location where the detectors are placed to capture the focused image. Formed by Lens Systems (C): The lens system is responsible for collecting and focusing the incoming radiation onto the focal plane. It acts like a camera lens, creating a sharp image of the scene. Ground Resolution Cell (D): As previously defined, this is the smallest area on the ground that can be resolved by a remote sensing sensor. In the case of linear array scanne...