Skip to main content

Isodata clustering

Iso Cluster Classification in Unsupervised Image Classification

Iso Cluster Classification is a common unsupervised classification technique used in remote sensing. The "Iso Cluster" algorithm groups pixels with similar spectral characteristics into clusters, or spectral classes, based solely on the data's statistical properties. Unlike supervised classification, Iso Cluster classification doesn't require the analyst to predefine classes or training areas; instead, the algorithm analyzes the image data to find natural groupings of pixels. The analyst interprets these groups afterward to label them with meaningful information classes (e.g., water, forest, urban).

How Iso Cluster Classification Works

The Iso Cluster algorithm follows several steps to group pixels:

  1. Initial Data Analysis: The algorithm examines the entire dataset to understand the spectral distribution of the pixels across the spectral bands.

  2. Clustering Process:    - The algorithm starts by dividing the dataset into a specified number of clusters. The analyst can set the desired number of clusters, or if uncertain, can allow the system to determine an optimal number.    - Iso Cluster uses the Iterative Self-Organizing Data Analysis Technique Algorithm (ISODATA) to refine these clusters through an iterative process. The ISODATA algorithm analyzes the clusters repeatedly to maximize separation between clusters while minimizing within-cluster variance.

  3. Cluster Refinement:    - During each iteration, the algorithm recalculates the center (mean vector) of each cluster based on the pixels within it.    - If two clusters are too similar, they may be merged, while larger clusters with high variability may be split into smaller clusters. This adjustment continues until clusters are well-separated and stable.

  4. Final Clustering:    - Once the iterative process stabilizes, the final clusters are assigned. Each pixel is labeled with a cluster ID based on its spectral similarity to a particular cluster center.    - The analyst interprets these clusters and assigns labels according to the types of land cover or features represented (e.g., identifying a cluster as water, forest, etc.).

When to Use Iso Cluster Classification

Iso Cluster classification is particularly useful in situations where:

  • The analyst lacks specific knowledge about the classes in the area and wants the algorithm to reveal patterns within the data.
  • There are complex or diverse land cover types, making it difficult to predefine training sites.
  • Exploratory analysis is needed to understand the range of spectral characteristics in an unfamiliar region.

Advantages and Limitations

Advantages:

  • No Training Required: Iso Cluster doesn't need predefined training areas, so it's simpler to apply in regions where ground truth data is unavailable.
  • Automated Grouping: Automatically identifies patterns and clusters, helping analysts explore the data.
  • Flexibility: Useful for large datasets and areas with high spectral variability.

Limitations:

  • Interpretation Required: Iso Cluster outputs unlabeled spectral clusters, so the analyst must interpret and assign meaningful class labels afterward.
  • Less Precision: Without ground-truthing, the cluster groups may not perfectly match real-world classes.
  • Dependency on Parameters: The quality of clustering can depend on the parameters set by the analyst, such as the initial number of clusters.

Summary Table

AspectIso Cluster Classification
TypeUnsupervised Classification
ProcessUses ISODATA algorithm for iterative clustering
Training RequiredNo
OutputUnlabeled spectral clusters
Best Use CaseExploratory analysis in unknown or complex regions
AdvantagesNo training data needed, reveals natural patterns in data
LimitationsRequires interpretation, results depend on clustering parameters







PG and Research Department of Geography,
Government College Chittur, Palakkad
https://g.page/vineeshvc

Comments

Popular posts from this blog

Geology and Tectonic. Indian Shield

1. Ch (Chattisgarh Basin): Chattisgarh Basin is a geological region in central India known for its sedimentary rock formations. It's important for its mineral resources, including coal and iron ore. 2. CIS (Central Indian Shear Zone): CIS is a tectonic boundary in central India where the Indian Plate interacts with the Eurasian Plate. It's characterized by significant faulting and seismic activity. 3. GR (Godavari Rift): The Godavari Rift is a geological feature associated with the rifting and splitting of the Indian Plate. It's located in the Godavari River basin in southeastern India. 4. M (Madras Block): The Madras Block is a stable continental block in southern India. It's part of the Indian Plate and is not associated with active tectonic processes. 5. Mk (Malanjkhand): Malanjkhand is known for its copper deposits and is one of the largest copper mines in India. 6. MR (Mahanadi Rift): The Mahanadi Rift is a geological feature related to the rifting of the Indian Pl...

Solar Radiation and Remote Sensing

Satellite Remote Sensing Satellite remote sensing is the science of acquiring information about Earth's surface and atmosphere without physical contact , using sensors mounted on satellites. These sensors detect and record electromagnetic radiation (EMR) that is either emitted or reflected from the Earth's surface. Solar Radiation & Earth's Energy Balance Solar Radiation is the primary source of energy for Earth's climate system. It originates from the Sun and travels through space as electromagnetic waves . Incoming Shortwave Solar Radiation (insolation) consists mostly of ultraviolet, visible, and near-infrared wavelengths . When it reaches Earth, it can be: Absorbed by the atmosphere, clouds, or surface Reflected back to space Scattered by atmospheric particles Outgoing Longwave Radiation is the infrared energy emitted by Earth back into space after absorbing solar energy. This process helps maintain Earth's thermal bala...

Morpho-Tectonic Framework of India

The MorphoTectonic Framework of India refers to the combined study of the country's landforms (morphology) and its geological tectonic features. This framework provides insights into how geological forces have shaped India's topography over millions of years. Here's a breakdown of this concept: 1. Morphology: This aspect focuses on the physical features and landforms of India. It includes the study of mountains, plateaus, plains, valleys, rivers, and other surface features. For example, the Himalayas, Western Ghats, IndoGangetic Plains, and Deccan Plateau are prominent morphological features of India. 2. Tectonics: Tectonics deals with the movement and deformation of the Earth's lithosphere (the outermost rigid layer of the Earth). In the case of India, it primarily involves the interactions of the Indian Plate with neighboring tectonic plates. India is situated at the convergence of several major tectonic boundaries:     Collision with the Eurasian Plate: The most sign...

Neighbourhood Operations

 Neighbourhood Operations in GIS? In GIS and raster data , neighbourhood operations look at a group of nearby pixels (not just one) to understand or change a pixel's value. Think of it like checking what's around a house before deciding what color to paint it! Why "Neighbourhood"? Each pixel has " neighbours " (just like how your house has nearby houses). Neighbourhood operations check these nearby pixels and do some calculation to get a new value. 1. Aggregations (Summarizing Nearby Values) Aggregation means combining values of several pixels into one. We do this to: Find the average of surrounding pixels Find the minimum or maximum value Smooth the map (make it less rough) 🧒🏻 Example: Imagine checking the test scores of 9 students sitting around you and finding the average score . That's aggregation!  2. Filtering Techniques Filtering is used to improve or highlight features in a raster image, just like f...

India – Geographic Location – Spatial Significance

India's geographic location holds immense spatial significance due to its position on the world map. Here's an explanation of India's geographic location and its spatial significance: Geographic Location: India is a vast South Asian country located on the Indian subcontinent. Its geographic coordinates are approximately between 8°4'N and 37°6'N latitude and 68°7'E and 97°25'E longitude. It is surrounded by several important bodies of water: - To the west, it has a coastline along the Arabian Sea. - To the east, it is bordered by the Bay of Bengal. - To the south, it faces the Indian Ocean. - To the north, India shares its land borders with Pakistan, China, Nepal, Bhutan, Bangladesh, and Myanmar. Spatial Significance: 1. Strategic Location: India's location places it at the crossroads of South Asia and the Indian Ocean region. This strategic position has made it historically important for trade, diplomacy, and geopolitics. 2. Trade and Commerce: India...