Skip to main content

Isodata clustering

Iso Cluster Classification in Unsupervised Image Classification

Iso Cluster Classification is a common unsupervised classification technique used in remote sensing. The "Iso Cluster" algorithm groups pixels with similar spectral characteristics into clusters, or spectral classes, based solely on the data's statistical properties. Unlike supervised classification, Iso Cluster classification doesn't require the analyst to predefine classes or training areas; instead, the algorithm analyzes the image data to find natural groupings of pixels. The analyst interprets these groups afterward to label them with meaningful information classes (e.g., water, forest, urban).

How Iso Cluster Classification Works

The Iso Cluster algorithm follows several steps to group pixels:

  1. Initial Data Analysis: The algorithm examines the entire dataset to understand the spectral distribution of the pixels across the spectral bands.

  2. Clustering Process:    - The algorithm starts by dividing the dataset into a specified number of clusters. The analyst can set the desired number of clusters, or if uncertain, can allow the system to determine an optimal number.    - Iso Cluster uses the Iterative Self-Organizing Data Analysis Technique Algorithm (ISODATA) to refine these clusters through an iterative process. The ISODATA algorithm analyzes the clusters repeatedly to maximize separation between clusters while minimizing within-cluster variance.

  3. Cluster Refinement:    - During each iteration, the algorithm recalculates the center (mean vector) of each cluster based on the pixels within it.    - If two clusters are too similar, they may be merged, while larger clusters with high variability may be split into smaller clusters. This adjustment continues until clusters are well-separated and stable.

  4. Final Clustering:    - Once the iterative process stabilizes, the final clusters are assigned. Each pixel is labeled with a cluster ID based on its spectral similarity to a particular cluster center.    - The analyst interprets these clusters and assigns labels according to the types of land cover or features represented (e.g., identifying a cluster as water, forest, etc.).

When to Use Iso Cluster Classification

Iso Cluster classification is particularly useful in situations where:

  • The analyst lacks specific knowledge about the classes in the area and wants the algorithm to reveal patterns within the data.
  • There are complex or diverse land cover types, making it difficult to predefine training sites.
  • Exploratory analysis is needed to understand the range of spectral characteristics in an unfamiliar region.

Advantages and Limitations

Advantages:

  • No Training Required: Iso Cluster doesn't need predefined training areas, so it's simpler to apply in regions where ground truth data is unavailable.
  • Automated Grouping: Automatically identifies patterns and clusters, helping analysts explore the data.
  • Flexibility: Useful for large datasets and areas with high spectral variability.

Limitations:

  • Interpretation Required: Iso Cluster outputs unlabeled spectral clusters, so the analyst must interpret and assign meaningful class labels afterward.
  • Less Precision: Without ground-truthing, the cluster groups may not perfectly match real-world classes.
  • Dependency on Parameters: The quality of clustering can depend on the parameters set by the analyst, such as the initial number of clusters.

Summary Table

AspectIso Cluster Classification
TypeUnsupervised Classification
ProcessUses ISODATA algorithm for iterative clustering
Training RequiredNo
OutputUnlabeled spectral clusters
Best Use CaseExploratory analysis in unknown or complex regions
AdvantagesNo training data needed, reveals natural patterns in data
LimitationsRequires interpretation, results depend on clustering parameters







PG and Research Department of Geography,
Government College Chittur, Palakkad
https://g.page/vineeshvc

Comments

Popular posts from this blog

Atmospheric Window

The atmospheric window in remote sensing refers to specific wavelength ranges within the electromagnetic spectrum that can pass through the Earth's atmosphere relatively unimpeded. These windows are crucial for remote sensing applications because they allow us to observe the Earth's surface and atmosphere without significant interference from the atmosphere's constituents. Key facts and concepts about atmospheric windows: Visible and Near-Infrared (VNIR) window: This window encompasses wavelengths from approximately 0. 4 to 1. 0 micrometers. It is ideal for observing vegetation, water bodies, and land cover types. Shortwave Infrared (SWIR) window: This window covers wavelengths from approximately 1. 0 to 3. 0 micrometers. It is particularly useful for detecting minerals, water content, and vegetation health. Mid-Infrared (MIR) window: This window spans wavelengths from approximately 3. 0 to 8. 0 micrometers. It is valuable for identifying various materials, incl

DRA Disaster Risk Assessment

Disaster Risk Assessment (DRA): A Professional Overview Disaster Risk Assessment (DRA) is a systematic process used to identify, analyze, and evaluate the potential hazards, vulnerabilities, and risks posed by disasters to people, property, infrastructure, and the environment. It is a critical tool for effective disaster risk management, enabling communities, organizations, and governments to make informed decisions and implement appropriate mitigation measures. Key Components of DRA Hazard Identification: Identifying the types of hazards that could potentially affect a specific area, such as natural disasters (earthquakes, floods, cyclones), technological disasters (industrial accidents, infrastructure failures), or man-made disasters (conflicts, pandemics). Vulnerability Assessment: Evaluating the susceptibility of people, infrastructure, and the environment to the identified hazards. This involves assessing factors such as location, construction quality, socio-economic co

Linear Arrays Along-Track Scanners or Pushbroom Scanners

Multispectral Imaging Using Linear Arrays (Along-Track Scanners or Pushbroom Scanners) Multispectral Imaging: As previously defined, this involves capturing images using multiple sensors that are sensitive to different wavelengths of electromagnetic radiation. Linear Array of Detectors (A): This refers to a row of discrete detectors arranged in a straight line. Each detector is responsible for measuring the radiation within a specific wavelength band. Focal Plane (B): This is the plane where the image is formed by the lens system. It is the location where the detectors are placed to capture the focused image. Formed by Lens Systems (C): The lens system is responsible for collecting and focusing the incoming radiation onto the focal plane. It acts like a camera lens, creating a sharp image of the scene. Ground Resolution Cell (D): As previously defined, this is the smallest area on the ground that can be resolved by a remote sensing sensor. In the case of linear array scanne

Discrete Detectors and Scanning mirrors Across the track scanner Whisk broom scanner.

Multispectral Imaging Using Discrete Detectors and Scanning Mirrors (Across-Track Scanner or Whisk Broom Scanner) Multispectral Imaging:  This technique involves capturing images of the Earth's surface using multiple sensors that are sensitive to different wavelengths of electromagnetic radiation.  This allows for the identification of various features and materials based on their spectral signatures. Discrete Detectors:  These are individual sensors that are arranged in a linear or array configuration.  Each detector is responsible for measuring the radiation within a specific wavelength band. Scanning Mirrors:  These are optical components that are used to deflect the incoming radiation onto the discrete detectors.  By moving the mirrors,  the sensor can scan across the scene,  capturing data from different points. Across-Track Scanner or Whisk Broom Scanner:  This refers to the scanning mechanism where the mirror moves perpendicular to the direction of flight.  This allows for t

Hazard Vulnerability Exposure Risk

Key Concepts in Hazard Identification, Vulnerability Assessment, Exposure Assessment, and Risk Analysis Hazard-Exposure-Vulnerability-Risk (HEVR) Framework: Hazard: A potential event or phenomenon that can cause harm. Exposure: People, assets, or environments in harm's way. Vulnerability: Susceptibility to damage or harm from a hazard. Risk: The potential for loss or damage resulting from the interaction of hazards, exposure, and vulnerability. Risk as a Function: Risk can be calculated using the formula: Risk = Hazard × Vulnerability × Exposure. Reducing any of these factors can decrease overall risk. Types of Hazards: Natural hazards: Earthquakes, floods, tsunamis, landslides, hurricanes. Anthropogenic hazards: Industrial accidents, pollution, infrastructure failure, climate change. Technological hazards: Nuclear accidents, chemical spills. Vulnerability Dimensions: Physical: Infrastructure quality, building codes, location. Social: Age, income, disability, gender, acces