Skip to main content

Isodata clustering

Iso Cluster Classification in Unsupervised Image Classification

Iso Cluster Classification is a common unsupervised classification technique used in remote sensing. The "Iso Cluster" algorithm groups pixels with similar spectral characteristics into clusters, or spectral classes, based solely on the data's statistical properties. Unlike supervised classification, Iso Cluster classification doesn't require the analyst to predefine classes or training areas; instead, the algorithm analyzes the image data to find natural groupings of pixels. The analyst interprets these groups afterward to label them with meaningful information classes (e.g., water, forest, urban).

How Iso Cluster Classification Works

The Iso Cluster algorithm follows several steps to group pixels:

  1. Initial Data Analysis: The algorithm examines the entire dataset to understand the spectral distribution of the pixels across the spectral bands.

  2. Clustering Process:    - The algorithm starts by dividing the dataset into a specified number of clusters. The analyst can set the desired number of clusters, or if uncertain, can allow the system to determine an optimal number.    - Iso Cluster uses the Iterative Self-Organizing Data Analysis Technique Algorithm (ISODATA) to refine these clusters through an iterative process. The ISODATA algorithm analyzes the clusters repeatedly to maximize separation between clusters while minimizing within-cluster variance.

  3. Cluster Refinement:    - During each iteration, the algorithm recalculates the center (mean vector) of each cluster based on the pixels within it.    - If two clusters are too similar, they may be merged, while larger clusters with high variability may be split into smaller clusters. This adjustment continues until clusters are well-separated and stable.

  4. Final Clustering:    - Once the iterative process stabilizes, the final clusters are assigned. Each pixel is labeled with a cluster ID based on its spectral similarity to a particular cluster center.    - The analyst interprets these clusters and assigns labels according to the types of land cover or features represented (e.g., identifying a cluster as water, forest, etc.).

When to Use Iso Cluster Classification

Iso Cluster classification is particularly useful in situations where:

  • The analyst lacks specific knowledge about the classes in the area and wants the algorithm to reveal patterns within the data.
  • There are complex or diverse land cover types, making it difficult to predefine training sites.
  • Exploratory analysis is needed to understand the range of spectral characteristics in an unfamiliar region.

Advantages and Limitations

Advantages:

  • No Training Required: Iso Cluster doesn't need predefined training areas, so it's simpler to apply in regions where ground truth data is unavailable.
  • Automated Grouping: Automatically identifies patterns and clusters, helping analysts explore the data.
  • Flexibility: Useful for large datasets and areas with high spectral variability.

Limitations:

  • Interpretation Required: Iso Cluster outputs unlabeled spectral clusters, so the analyst must interpret and assign meaningful class labels afterward.
  • Less Precision: Without ground-truthing, the cluster groups may not perfectly match real-world classes.
  • Dependency on Parameters: The quality of clustering can depend on the parameters set by the analyst, such as the initial number of clusters.

Summary Table

AspectIso Cluster Classification
TypeUnsupervised Classification
ProcessUses ISODATA algorithm for iterative clustering
Training RequiredNo
OutputUnlabeled spectral clusters
Best Use CaseExploratory analysis in unknown or complex regions
AdvantagesNo training data needed, reveals natural patterns in data
LimitationsRequires interpretation, results depend on clustering parameters







PG and Research Department of Geography,
Government College Chittur, Palakkad
https://g.page/vineeshvc

Comments

Popular posts from this blog

Natural Disasters

A natural disaster is a catastrophic event caused by natural processes of the Earth that results in significant loss of life, property, and environmental resources. It occurs when a hazard (potentially damaging physical event) interacts with a vulnerable population and leads to disruption of normal life . Key terms: Hazard → A potential natural event (e.g., cyclone, earthquake). Disaster → When the hazard causes widespread damage due to vulnerability. Risk → Probability of harmful consequences from interaction of hazard and vulnerability. Vulnerability → Degree to which a community or system is exposed and unable to cope with the hazard. Resilience → Ability of a system or society to recover from the disaster impact. 👉 Example: An earthquake in an uninhabited desert is a hazard , but not a disaster unless people or infrastructure are affected. Types Natural disasters can be classified into geophysical, hydrological, meteorological, clim...

Types of Remote Sensing

Remote Sensing means collecting information about the Earth's surface without touching it , usually using satellites, aircraft, or drones . There are different types of remote sensing based on the energy source and the wavelength region used. 🛰️ 1. Active Remote Sensing 📘 Concept: In active remote sensing , the sensor sends out its own energy (like a signal or pulse) to the Earth's surface. The sensor then records the reflected or backscattered energy that comes back from the surface. ⚙️ Key Terminology: Transmitter: sends energy (like a radar pulse or laser beam). Receiver: detects the energy that bounces back. Backscatter: energy that is reflected back to the sensor. 📊 Examples of Active Sensors: RADAR (Radio Detection and Ranging): Uses microwave signals to detect surface roughness, soil moisture, or ocean waves. LiDAR (Light Detection and Ranging): Uses laser light (near-infrared) to measure elevation, vegetation...

geostationary and sun-synchronous

Orbital characteristics of Remote sensing satellite geostationary and sun-synchronous  Orbits in Remote Sensing Orbit = the path a satellite follows around the Earth. The orbit determines what part of Earth the satellite can see , how often it revisits , and what applications it is good for . Remote sensing satellites mainly use two standard orbits : Geostationary Orbit (GEO) Sun-Synchronous Orbit (SSO)  Geostationary Satellites (GEO) Characteristics Altitude : ~35,786 km above the equator. Period : 24 hours → same as Earth's rotation. Orbit type : Circular, directly above the equator . Appears "stationary" over one fixed point on Earth. Concepts & Terminologies Geosynchronous = orbit period matches Earth's rotation (24h). Geostationary = special type of geosynchronous orbit directly above equator → looks fixed. Continuous coverage : Can monitor the same area all the time. Applications Weather...

Linear Arrays Along-Track Scanners or Pushbroom Scanners

Multispectral Imaging Using Linear Arrays (Along-Track Scanners or Pushbroom Scanners) Multispectral Imaging: As previously defined, this involves capturing images using multiple sensors that are sensitive to different wavelengths of electromagnetic radiation. Linear Array of Detectors (A): This refers to a row of discrete detectors arranged in a straight line. Each detector is responsible for measuring the radiation within a specific wavelength band. Focal Plane (B): This is the plane where the image is formed by the lens system. It is the location where the detectors are placed to capture the focused image. Formed by Lens Systems (C): The lens system is responsible for collecting and focusing the incoming radiation onto the focal plane. It acts like a camera lens, creating a sharp image of the scene. Ground Resolution Cell (D): As previously defined, this is the smallest area on the ground that can be resolved by a remote sensing sensor. In the case of linear array scanne...

India remote sensing

1. Foundational Phase (Early 1970s – Early 1980s) Objective: To explore the potential of space-based observation for national development. 1972: The Space Applications Programme (SAP) was initiated by the Indian Space Research Organisation (ISRO), focusing on applying space technology for societal benefits. 1975: The Department of Space (DoS) was established, providing an institutional base for space applications, including remote sensing. 1977: India began aerial and balloon-borne experiments to study Earth resources and assess how remote sensing data could aid in agriculture, forestry, and hydrology. 1978 (June 7): Bhaskara-I launched by the Soviet Union — India's first experimental Earth Observation satellite . Payloads: TV cameras (for land and ocean surface observation) and a Microwave Radiometer. Significance: Proved that satellite-based Earth observation was feasible for India's needs. 1981 (November 20): Bhaskara-II launche...