Skip to main content

LiDaR Remote Sensing

LiDAR Remote Sensing: A Primer

LiDAR (Light Detection and Ranging) is a remote sensing technology that uses light in the form of a pulsed laser beam to measure ranges to the Earth's surface and various objects. This technology is incredibly versatile and has applications in a wide range of fields, including:

  • Cartography and mapping: Creating highly accurate 3D maps of the Earth's surface, including topography, vegetation, and buildings.
  • Forestry: Measuring forest height, density, and biomass.
  • Geology: Studying geological formations and identifying potential natural hazards.
  • Archaeology: Discovering and mapping ancient sites.
  • Environmental monitoring: Assessing changes in land cover, coastal erosion, and climate-related impacts.

Key Terminologies and Concepts

  1. Laser: A device that emits an intense beam of coherent light. LiDAR systems use lasers to emit pulses of light.
  2. Pulse: A short burst of laser energy.
  3. Time of Flight: The time it takes for a laser pulse to travel to a target and return to the sensor. This is used to calculate the distance to the target.
  4. Point Cloud: A collection of individual points, each representing a specific location on the Earth's surface. LiDAR data is often processed to create point clouds.
  5. Digital Surface Model (DSM): A 3D representation of the Earth's surface, including the tops of buildings, trees, and other objects.
  6. Digital Terrain Model (DTM): A 3D representation of the Earth's surface, excluding vegetation and other objects.
  7. Intensity: A measure of the strength of the laser return signal. This can be used to infer information about the properties of the target.
  8. Footprint: The area on the ground that is illuminated by a laser pulse.
  9. Accuracy: The degree to which LiDAR measurements agree with true values.
  10. Precision: The degree to which LiDAR measurements are consistent with each other.

Facts and Applications

  • High Accuracy: LiDAR can provide centimeter-level accuracy in measurements.
  • Versatility: LiDAR can be used to measure a wide range of objects, from small plants to large buildings.
  • Penetration: LiDAR can penetrate vegetation and other materials to measure underlying surfaces.
  • Real-Time Data: Some LiDAR systems can provide real-time data, allowing for immediate analysis and decision-making.


Comments

Popular posts from this blog

Disaster Management

1. Disaster Risk Analysis → Disaster Risk Reduction → Disaster Management Cycle Disaster Risk Analysis is the first step in managing disasters. It involves assessing potential hazards, identifying vulnerable populations, and estimating possible impacts. Once risks are identified, Disaster Risk Reduction (DRR) strategies come into play. DRR aims to reduce risk and enhance resilience through planning, infrastructure development, and policy enforcement. The Disaster Management Cycle then ensures a structured approach by dividing actions into pre-disaster, during-disaster, and post-disaster phases . Example Connection: Imagine a coastal city prone to cyclones: Risk Analysis identifies low-lying areas and weak infrastructure. Risk Reduction includes building seawalls, enforcing strict building codes, and training residents for emergency situations. The Disaster Management Cycle ensures ongoing preparedness, immediate response during a cyclone, and long-term recovery afterw...

Logical Data Model in GIS

In GIS, a logical data model defines how data is structured and interrelated—independent of how it is physically stored or implemented. It serves as a blueprint for designing databases, focusing on the organization of entities, their attributes, and relationships, without tying them to a specific database technology. Key Features Abstraction : The logical model operates at an abstract level, emphasizing the conceptual structure of data rather than the technical details of storage or implementation. Entity-Attribute Relationships : It identifies key entities (objects or concepts) and their attributes (properties), as well as the logical relationships between them. Business Rules : Business logic is embedded in the model to enforce rules, constraints, and conditions that ensure data consistency and accuracy. Technology Independence : The logical model is platform-agnostic—it is not tied to any specific database system or storage format. Visual Representat...

Approaches of Surface Water Management: Watershed-Based Approaches

Surface water management refers to the strategies used to regulate and optimize the availability, distribution, and quality of surface water resources such as rivers, lakes, and reservoirs. One of the most effective strategies is the watershed-based approach , which considers the entire watershed or drainage basin as a unit for water resource management, ensuring sustainability and minimizing conflicts between upstream and downstream users. 1. Watershed-Based Approaches Watershed A watershed (or drainage basin) is a geographical area where all precipitation and surface runoff flow into a common outlet such as a river, lake, or ocean. Example : The Ganga River Basin is a watershed that drains into the Bay of Bengal. Hydrological Cycle and Watershed Management Watershed-based approaches work by managing the hydrological cycle , which involves precipitation, infiltration, runoff, evapotranspiration, and groundwater recharge. Precipitation : Rainfall or snowfall within a...

Raster Data Structure

Raster Data Raster data is like a digital photo made up of small squares called cells or pixels . Each cell shows something about that spot — like how high it is (elevation), how hot it is (temperature), or what kind of land it is (forest, water, etc.). Think of it like a graph paper where each box is colored to show what's there. Key Points What's in the cell? Each cell stores information — for example, "water" or "forest." Where is the cell? The cell's location comes from its place in the grid (like row 3, column 5). We don't need to store its exact coordinates. How Do We Decide a Cell's Value? Sometimes, one cell covers more than one thing (like part forest and part water). To choose one value , we can: Center Point: Use whatever feature is in the middle. Most Area: Use the feature that takes up the most space in the cell. Most Important: Use the most important feature (like a road or well), even if it...

Disaster Management international framework

The international landscape for disaster management relies on frameworks that emphasize reducing risk, improving preparedness, and fostering resilience to protect lives, economies, and ecosystems from the impacts of natural and human-made hazards. Here's a more detailed examination of key international frameworks, with a focus on terminologies, facts, and concepts, as well as the role of the United Nations Office for Disaster Risk Reduction (UNDRR): 1. Sendai Framework for Disaster Risk Reduction 2015-2030 Adopted at the Third UN World Conference on Disaster Risk Reduction in Sendai, Japan, and endorsed by the UN General Assembly in 2015, the Sendai Framework represents a paradigm shift from disaster response to proactive disaster risk management. It applies across natural, technological, and biological hazards. Core Priorities: Understanding Disaster Risk: This includes awareness of disaster risk factors and strengthening risk assessments based on geographic, social, and econo...