Skip to main content

Ellipsoid and Geoid Datums Geodetic and Vertical Global and Local

Ellipsoid and Geoid


Ellipsoid:

- Imagine the Earth is shaped like a slightly squished ball. An ellipsoid is a smooth, math-based shape like this that we use to help map the Earth.

- Different ellipsoids fit the Earth in slightly different ways, like picking the best-fitting ball for different parts of the world.


Geoid:

- The geoid is like the shape of the sea level if it was extended all around the Earth, even under the land. It's a wavy, bumpy surface because gravity pulls differently in different places.

- We use the geoid to measure heights, like how tall a mountain is above sea level.


 Datums


Datums:

- A datum is like a starting point or baseline for measuring places on Earth. Think of it as a fixed reference point from which we measure.

- There are two main types:

  - Geodetic (Horizontal) Datums: These are like a grid we lay over the Earth to measure positions (latitude and longitude).

  - Vertical Datums: These help us measure heights (elevations) above sea level.


 Geodetic and Vertical


Geodetic:

- Geodetic refers to the system we use to measure exact positions on the Earth's surface. It includes latitude, longitude, and sometimes height.

- These measurements help us understand where things are located precisely on the globe.


Vertical:

- Vertical measurements tell us how high or low something is compared to sea level.

- This is useful for things like building roads, measuring mountain heights, and flood planning.


 Global and Local


Global:

- Global systems cover the whole world. They provide a way to measure things consistently no matter where you are on Earth.

- Examples are the systems used by GPS satellites.


Local:

- Local systems are designed for specific regions or countries. They are very accurate in their area but might not work well globally.

- For example, a local system might be used just for North America or just for Great Britain.


In summary, these concepts help us map and measure the Earth accurately, whether we're looking at the whole world or just a small part of it.




Comments

Popular posts from this blog

geostationary and sun-synchronous

Orbital characteristics of Remote sensing satellite geostationary and sun-synchronous  Orbits in Remote Sensing Orbit = the path a satellite follows around the Earth. The orbit determines what part of Earth the satellite can see , how often it revisits , and what applications it is good for . Remote sensing satellites mainly use two standard orbits : Geostationary Orbit (GEO) Sun-Synchronous Orbit (SSO)  Geostationary Satellites (GEO) Characteristics Altitude : ~35,786 km above the equator. Period : 24 hours → same as Earth's rotation. Orbit type : Circular, directly above the equator . Appears "stationary" over one fixed point on Earth. Concepts & Terminologies Geosynchronous = orbit period matches Earth's rotation (24h). Geostationary = special type of geosynchronous orbit directly above equator → looks fixed. Continuous coverage : Can monitor the same area all the time. Applications Weather...

Disaster Management

1. Disaster Risk Analysis → Disaster Risk Reduction → Disaster Management Cycle Disaster Risk Analysis is the first step in managing disasters. It involves assessing potential hazards, identifying vulnerable populations, and estimating possible impacts. Once risks are identified, Disaster Risk Reduction (DRR) strategies come into play. DRR aims to reduce risk and enhance resilience through planning, infrastructure development, and policy enforcement. The Disaster Management Cycle then ensures a structured approach by dividing actions into pre-disaster, during-disaster, and post-disaster phases . Example Connection: Imagine a coastal city prone to cyclones: Risk Analysis identifies low-lying areas and weak infrastructure. Risk Reduction includes building seawalls, enforcing strict building codes, and training residents for emergency situations. The Disaster Management Cycle ensures ongoing preparedness, immediate response during a cyclone, and long-term recovery afterw...

Linear Arrays Along-Track Scanners or Pushbroom Scanners

Multispectral Imaging Using Linear Arrays (Along-Track Scanners or Pushbroom Scanners) Multispectral Imaging: As previously defined, this involves capturing images using multiple sensors that are sensitive to different wavelengths of electromagnetic radiation. Linear Array of Detectors (A): This refers to a row of discrete detectors arranged in a straight line. Each detector is responsible for measuring the radiation within a specific wavelength band. Focal Plane (B): This is the plane where the image is formed by the lens system. It is the location where the detectors are placed to capture the focused image. Formed by Lens Systems (C): The lens system is responsible for collecting and focusing the incoming radiation onto the focal plane. It acts like a camera lens, creating a sharp image of the scene. Ground Resolution Cell (D): As previously defined, this is the smallest area on the ground that can be resolved by a remote sensing sensor. In the case of linear array scanne...

Discrete Detectors and Scanning mirrors Across the track scanner Whisk broom scanner.

Multispectral Imaging Using Discrete Detectors and Scanning Mirrors (Across-Track Scanner or Whisk Broom Scanner) Multispectral Imaging:  This technique involves capturing images of the Earth's surface using multiple sensors that are sensitive to different wavelengths of electromagnetic radiation.  This allows for the identification of various features and materials based on their spectral signatures. Discrete Detectors:  These are individual sensors that are arranged in a linear or array configuration.  Each detector is responsible for measuring the radiation within a specific wavelength band. Scanning Mirrors:  These are optical components that are used to deflect the incoming radiation onto the discrete detectors.  By moving the mirrors,  the sensor can scan across the scene,  capturing data from different points. Across-Track Scanner or Whisk Broom Scanner:  This refers to the scanning mechanism where the mirror moves perpendicular to the direction of flight.  This allows for t...

Disaster Risk

Disaster Risk