Skip to main content

Indo Brahma theory and shivalik river


1. Initial River Formation: During the Miocene period, approximately 5-24 million years ago, a significant river known as the Shiwalik or Indo-Brahma traversed the entire length of the Himalayas, flowing from Assam to Punjab. This river had a massive longitudinal extent and discharged into the Gulf of Sind near lower Punjab.

2. Sedimentary Evidence: The continuity of the Shiwalik and the presence of lacustrine origin and alluvial deposits, including sands, silt, clay, boulders, and conglomerates, provide geological evidence supporting the existence of this ancient river.

3. Fragmentation into Three Drainage Systems:
   - Indus Drainage System: In the western part of the Himalayas, the Indo-Brahma river eventually fragmented, forming the Indus River and its five main tributaries. This fragmentation likely occurred due to geological events such as the Pleistocene upheaval in the western Himalayas.
   - Ganga Drainage System: In the central part of the Himalayas, the Indo-Brahma river gave rise to the Ganga River and its Himalayan tributaries. The uplift of the Potwar Plateau, also known as the Delhi Ridge, acted as a watershed dividing the Indus and Ganga drainage systems.
   - Brahmaputra Drainage System: In the eastern part of the Himalayas, the stretch of the Indo-Brahma river in Assam transformed into the Brahmaputra River and its Himalayan tributaries. The downthrusting of the Malda gap area between the Rajmahal hills and the Meghalaya plateau during the mid-Pleistocene period diverted the flow of the Ganga and Brahmaputra systems towards the Bay of Bengal.

4. Geological Processes: The Pleistocene upheaval in the western Himalayas, including the uplift of the Potwar Plateau, likely played a significant role in the fragmentation of the Indo-Brahma river. Similarly, the downward movement of the Malda gap area redirected the flow of rivers towards the Bay of Bengal, reshaping the drainage pattern in the eastern part of the Himalayas.

These geological processes, including uplifts, downthrusting, and watershed formations, have contributed to the complex and diverse drainage system of the Himalayas, shaping the landscape and influencing the distribution of rivers and tributaries in the region.




Comments

Popular posts from this blog

Geography of Landslides. Mitigation and Resilience.

A landslide is a geological event in which a mass of rock, earth, or debris moves down a slope under the force of gravity. Landslides can range in size from small to large and can be triggered by natural events such as heavy rainfall, earthquakes, or volcanic activity, or by human activities such as construction or mining. The geography of landslides is affected by a variety of factors that can increase the likelihood of landslides occurring in a particular area. These factors include slope angle and steepness, the type of soil and rock present, the climate and weather patterns of the region, the presence or absence of vegetation, and human activities such as construction, mining, and deforestation. Areas with steep slopes are more prone to landslides because gravity has a stronger effect on loose soil and rock, making it more likely to move downhill. Similarly, areas with loose, sandy soil or weak, fractured rock are more prone to landslides because they are less stable and more easil

Disaster Management. Geography of Disaster Management.

Disaster management refers to the process of preparing for, responding to, and recovering from disasters or emergencies that may affect communities, regions, or entire countries. It involves the coordination of various activities and efforts by government agencies, non-governmental organizations, and other stakeholders to minimize the impact of disasters and promote the well-being of affected populations. The process of disaster management can be broken down into four phases: Mitigation: This involves taking steps to reduce the risk of disasters, such as identifying and addressing potential hazards, developing emergency plans, and improving infrastructure and systems. Preparedness: This involves preparing for the possibility of a disaster, such as training emergency responders, conducting drills and exercises, and stockpiling necessary supplies. Response: This involves taking immediate action during and immediately after a disaster, such as rescuing people, providing emergency medical

Landslide

Landslides are a type of "mass wasting," where soil and rock move down-slope due to gravity. Landslides can be caused by a combination of factors, such as rainfall, snowmelt, changes in water level, and human activities. There are five modes of slope movement, including falls, topples, slides, spreads, and flows, which vary depending on the type of geologic material. Debris flows and rock falls are common types of landslides. Landslides can also occur underwater, known as submarine landslides, and sometimes cause tsunamis. Landslides occur when down-slope forces exceed the strength of the earth materials that compose the slope. Slopes already on the verge of movement are more susceptible to landslides, which can be induced by earthquakes, volcanic activity, and stream erosion.  There are four main types of movement: falls, topples, slides (rotational and translational), and flows. Landslides can involve just one of these movements or a combination of several. Geologists also

Disaster Management Act, 2005. National Disaster Management Framework (NDMF) National Disaster Management Authority (NDMA). National Institute of Disaster Management (NIDM). National Disaster Response Force (NDRF)

Disaster Management Act, 2005. National Disaster Management Framework (NDMF) National Disaster Management Authority (NDMA). National Institute of Disaster Management (NIDM). National Disaster Response Force (NDRF) The National Disaster Management Framework (NDMF) in India is a comprehensive policy document that provides a framework for managing disasters in the country. The framework was first introduced in 2005 and was updated in 2019. The NDMF is based on the principle of an integrated approach to disaster management. It aims to bring together all stakeholders, including the government, non-governmental organizations (NGOs), civil society, and the private sector, to work towards a common goal of disaster management. The framework is designed to address all phases of disaster management, including prevention, preparedness, response, and recovery. It provides guidelines for various aspects of disaster management, including risk assessment, disaster planning, early warning systems, sear

Landslides. USGS

Landslides. TYPES OF LANDSLIDES The term "landslide" describes a wide variety of processes that result in the downward and outward movement of slope-forming materials including rock, soil, artificial fill, or a combination of these. The materials may move by falling, toppling, sliding, spreading, or flowing. The animated GIF shows a graphic illustration of different types of landslides, with the commonly accepted terminology describing their features. The various types of landslides can be differentiated by the kinds of material involved and the mode of movement.