Skip to main content

Flood prone regions India

Floods are natural disasters characterized by the overflow of water onto normally dry land. Various factors contribute to floods, including intense rainfall, rapid snowmelt, storm surges from coastal storms, and the failure of dams or levees. The geographical explanation involves understanding the key components of flood-prone regions:


1. Proximity to Water Bodies:

   Flood-prone regions are often situated near rivers, lakes, or coastal areas. These locations are more susceptible to flooding as they are in close proximity to large water sources that can overflow during heavy precipitation or storms.


2. Topography:

   Low-lying areas with gentle slopes are prone to flooding. Water naturally flows to lower elevations, and flat terrains allow water to accumulate easily. Valleys and floodplains are common flood-prone areas due to their topographical characteristics.


3. Rainfall Patterns:

   Regions with high and concentrated rainfall are more likely to experience flooding. Intense and prolonged rainfall can saturate the soil, exceed the capacity of rivers, and lead to flash floods or riverine flooding.


4. Snowmelt:

   Areas with significant snow accumulation are susceptible to flooding during warmer seasons when the snow begins to melt rapidly. This can result in increased river flow and potential flooding downstream.


5. Storm Surges:

   Coastal regions are at risk of flooding due to storm surges caused by tropical cyclones or hurricanes. Strong winds push water toward the coast, causing a rise in sea level and inundating low-lying coastal areas.


6. Human Activities:

   Urbanization and human development can alter natural drainage systems. The construction of impermeable surfaces, such as pavement and buildings, reduces the land's ability to absorb water. Additionally, the filling of wetlands and alteration of river courses contribute to increased flood risks.


7. Infrastructure:

   The condition of dams, levees, and other water management structures plays a crucial role. Failures or breaches in these structures can lead to sudden and severe flooding.


Flood prone regions in India

1. Brahmaputra River Basin: This region is located in the northeastern part of India and spans across the states of Assam, Arunachal Pradesh, and parts of Meghalaya and Nagaland. The Brahmaputra River, originating from the Tibetan Plateau, carries a massive volume of water during the monsoon season. The river's flow is further augmented by heavy rainfall in the region and the rapid melting of snow in the Himalayas. The topography of the Brahmaputra basin includes vast floodplains and low-lying areas, which are prone to inundation when the river overflows its banks. Additionally, the Brahmaputra's tributaries, such as the Subansiri, Lohit, and Dibang, contribute to the flooding in the region.


2. Ganga-Brahmaputra-Meghna Delta: This deltaic region is formed by the confluence of the Ganga, Brahmaputra, and Meghna rivers, primarily in the Sundarbans area of West Bengal and Bangladesh. The delta is characterized by a network of distributaries, tidal channels, and mangrove forests. The low-lying topography and porous soil make the region highly susceptible to flooding, especially during high tides and cyclonic storms. The Sundarbans, the world's largest mangrove forest, acts as a buffer against storm surges but is also at risk of inundation during extreme events.


3. Eastern Uttar Pradesh and Bihar: These states are located in the northern part of India and are frequently affected by floods originating from rivers flowing down from the Himalayas, particularly those originating in Nepal. The Kosi River, known as the "Sorrow of Bihar," is notorious for its shifting course and devastating floods. The Gandak, Ghaghara, and other rivers also contribute to flooding in the region. The flat terrain and inadequate drainage exacerbate the impact of flooding, leading to loss of lives and damage to infrastructure and crops.


4. Western Uttar Pradesh and Punjab: These states are situated in the northwestern part of India and are affected by floods primarily caused by the overflowing of the Yamuna and Ganga rivers, along with their tributaries. The monsoon rains and melting snow from the Himalayas result in increased water levels in these rivers, leading to inundation of agricultural lands and urban areas. The flat terrain and extensive canal networks further compound the flooding issues in these regions.


5. Coastal Areas: Coastal regions of India, including states like Kerala, Tamil Nadu, Andhra Pradesh, and Odisha, face multiple flood threats. During the monsoon season, heavy rainfall can lead to riverine flooding in coastal plains. Additionally, cyclones originating in the Bay of Bengal or the Arabian Sea often make landfall in these regions, causing storm surges, intense rainfall, and coastal flooding. The low-lying topography and densely populated coastal settlements increase the vulnerability of these areas to flooding and associated hazards.


These geographical factors interact to create complex flood dynamics in different regions of India, necessitating comprehensive planning and management strategies to mitigate the impact of floods on human lives, infrastructure, and the environment.



Comments

Popular posts from this blog

Geography of Landslides. Mitigation and Resilience.

A landslide is a geological event in which a mass of rock, earth, or debris moves down a slope under the force of gravity. Landslides can range in size from small to large and can be triggered by natural events such as heavy rainfall, earthquakes, or volcanic activity, or by human activities such as construction or mining. The geography of landslides is affected by a variety of factors that can increase the likelihood of landslides occurring in a particular area. These factors include slope angle and steepness, the type of soil and rock present, the climate and weather patterns of the region, the presence or absence of vegetation, and human activities such as construction, mining, and deforestation. Areas with steep slopes are more prone to landslides because gravity has a stronger effect on loose soil and rock, making it more likely to move downhill. Similarly, areas with loose, sandy soil or weak, fractured rock are more prone to landslides because they are less stable and more easil

Disaster Management. Geography of Disaster Management.

Disaster management refers to the process of preparing for, responding to, and recovering from disasters or emergencies that may affect communities, regions, or entire countries. It involves the coordination of various activities and efforts by government agencies, non-governmental organizations, and other stakeholders to minimize the impact of disasters and promote the well-being of affected populations. The process of disaster management can be broken down into four phases: Mitigation: This involves taking steps to reduce the risk of disasters, such as identifying and addressing potential hazards, developing emergency plans, and improving infrastructure and systems. Preparedness: This involves preparing for the possibility of a disaster, such as training emergency responders, conducting drills and exercises, and stockpiling necessary supplies. Response: This involves taking immediate action during and immediately after a disaster, such as rescuing people, providing emergency medical

Landslide

Landslides are a type of "mass wasting," where soil and rock move down-slope due to gravity. Landslides can be caused by a combination of factors, such as rainfall, snowmelt, changes in water level, and human activities. There are five modes of slope movement, including falls, topples, slides, spreads, and flows, which vary depending on the type of geologic material. Debris flows and rock falls are common types of landslides. Landslides can also occur underwater, known as submarine landslides, and sometimes cause tsunamis. Landslides occur when down-slope forces exceed the strength of the earth materials that compose the slope. Slopes already on the verge of movement are more susceptible to landslides, which can be induced by earthquakes, volcanic activity, and stream erosion.  There are four main types of movement: falls, topples, slides (rotational and translational), and flows. Landslides can involve just one of these movements or a combination of several. Geologists also

Disaster Management Act, 2005. National Disaster Management Framework (NDMF) National Disaster Management Authority (NDMA). National Institute of Disaster Management (NIDM). National Disaster Response Force (NDRF)

Disaster Management Act, 2005. National Disaster Management Framework (NDMF) National Disaster Management Authority (NDMA). National Institute of Disaster Management (NIDM). National Disaster Response Force (NDRF) The National Disaster Management Framework (NDMF) in India is a comprehensive policy document that provides a framework for managing disasters in the country. The framework was first introduced in 2005 and was updated in 2019. The NDMF is based on the principle of an integrated approach to disaster management. It aims to bring together all stakeholders, including the government, non-governmental organizations (NGOs), civil society, and the private sector, to work towards a common goal of disaster management. The framework is designed to address all phases of disaster management, including prevention, preparedness, response, and recovery. It provides guidelines for various aspects of disaster management, including risk assessment, disaster planning, early warning systems, sear

Landslides. USGS

Landslides. TYPES OF LANDSLIDES The term "landslide" describes a wide variety of processes that result in the downward and outward movement of slope-forming materials including rock, soil, artificial fill, or a combination of these. The materials may move by falling, toppling, sliding, spreading, or flowing. The animated GIF shows a graphic illustration of different types of landslides, with the commonly accepted terminology describing their features. The various types of landslides can be differentiated by the kinds of material involved and the mode of movement.