Skip to main content

Drought prone regions India

The geography of drought-prone regions in India is influenced by various factors, including climate, topography, and hydrology. Here's a brief overview of the geography of these regions:


1. Arid and Semi-Arid Climate: Many drought-prone regions in India fall within the arid and semi-arid climatic zones. These areas receive low and erratic rainfall, making them susceptible to droughts. States like Rajasthan, Gujarat, and parts of Maharashtra and Karnataka have arid or semi-arid climates, characterized by hot temperatures and sparse vegetation.


2. Geographical Features: Certain geographical features contribute to the prevalence of drought in specific regions. For example, the Thar Desert in Rajasthan and parts of Kutch in Gujarat are arid landscapes with scanty vegetation and limited water resources. These areas experience severe water scarcity during droughts.


3. Water Bodies and Rivers: Drought-prone regions may also lack significant water bodies or river systems, exacerbating water scarcity during dry spells. For instance, some parts of Maharashtra and Karnataka have limited access to perennial rivers, relying heavily on rainfall for water supply.


4. Topography: The topography of drought-prone regions can vary from flat plains to hilly terrain. In states like Madhya Pradesh, Uttar Pradesh, and Bihar, hilly and semi-hilly regions may experience water stress due to inadequate water retention capacity and runoff during droughts.


5. Groundwater Depletion: Over-exploitation of groundwater resources is a common issue in many drought-prone regions. Unsustainable agricultural practices, such as excessive groundwater pumping for irrigation, contribute to groundwater depletion, exacerbating drought conditions.


6. Vegetation Cover: Sparse vegetation cover in arid and semi-arid regions reduces the soil's ability to retain moisture, making these areas more vulnerable to drought. Deforestation and land degradation further compound the problem, leading to soil erosion and reduced water infiltration.


7. Rainfall Patterns: Irregular rainfall patterns, with uneven distribution and seasonal variations, are characteristic of drought-prone regions. Some areas may experience long dry spells interspersed with intense rainfall events, leading to water stress for agriculture and other activities.


Drought prone regions in India


1. Rajasthan: Rajasthan is the largest state in India and is predominantly arid or semi-arid. It experiences low and erratic rainfall, with most parts receiving less than 600 mm of rainfall annually. The Thar Desert covers a significant portion of the state, leading to water scarcity and frequent drought conditions.


2. Gujarat: Gujarat has a diverse climate, with some regions experiencing arid conditions. The Saurashtra region and parts of Kutch are particularly prone to drought due to low rainfall and high evaporation rates. Additionally, unsustainable water management practices exacerbate the situation.


3. Maharashtra: Maharashtra faces droughts frequently, especially in regions like Marathwada, Vidarbha, and parts of western Maharashtra. Factors such as irregular rainfall patterns, inadequate water management infrastructure, and over-exploitation of groundwater contribute to drought vulnerability.


4. Karnataka: Northern Karnataka, including districts like Gulbarga, Bidar, and Raichur, is prone to drought due to its semi-arid climate. Rainfall variability and poor water conservation measures aggravate the situation, impacting agriculture and livelihoods.


5. Andhra Pradesh and Telangana: These states have regions like Rayalaseema and Telangana, which face water scarcity and droughts due to irregular rainfall, unsustainable agricultural practices, and over-dependence on groundwater.


6. Tamil Nadu: Tamil Nadu experiences droughts, especially in its western districts like Coimbatore, Erode, and Salem. The state's water resources are strained due to low rainfall, excessive extraction of groundwater, and poor water management practices.


7. Madhya Pradesh: Certain parts of Madhya Pradesh, such as Bundelkhand and Malwa, are vulnerable to drought due to inadequate rainfall and soil moisture retention. Deforestation, soil erosion, and inefficient irrigation systems exacerbate the situation.


8. Uttar Pradesh: Eastern Uttar Pradesh, including districts like Bundelkhand, faces recurrent droughts due to inadequate monsoon rains and poor water management. Agricultural productivity suffers, impacting the livelihoods of millions.


9. Bihar: Some regions of Bihar, such as the North Bihar Plain, are susceptible to drought due to insufficient rainfall and inadequate irrigation facilities. The state's vulnerability is compounded by factors like soil degradation and floods in certain areas.


These regions face varying degrees of water scarcity and drought, affecting agricultural productivity, water availability for drinking and sanitation, and overall socio-economic development. Efforts to improve water management, promote sustainable agricultural practices, and build resilience to climate change are essential to mitigate the impacts of drought in these regions.


Comments

Popular posts from this blog

Geologic and tectonic framework of the Indian shield

  Major Terms and Regions Explained 1. Indian Shield The Indian Shield refers to the ancient, stable core of the Indian Plate made of hard crystalline rocks. It comprises Archean to Proterozoic rocks that have remained tectonically stable over billions of years. Important Geological Features and Regions ▪️ Ch – Chhattisgarh Basin A sedimentary basin part of the Bastar Craton . Contains rocks of Proterozoic age , mainly sedimentary. Important for understanding the evolution of central India. ▪️ CIS – Central Indian Shear Zone A major tectonic shear zone , separating the Bundelkhand and Bastar cratons . It records intense deformation and metamorphism . Acts as a suture zone , marking ancient tectonic collisions. ▪️ GR – Godavari Rift A rift valley formed due to stretching and thinning of the Earth's crust. Associated with sedimentary basins and hydrocarbon resources . ▪️ M – Madras Block An Archean crustal block in...

Geology and Tectonic. Indian Shield

1. Ch (Chattisgarh Basin): Chattisgarh Basin is a geological region in central India known for its sedimentary rock formations. It's important for its mineral resources, including coal and iron ore. 2. CIS (Central Indian Shear Zone): CIS is a tectonic boundary in central India where the Indian Plate interacts with the Eurasian Plate. It's characterized by significant faulting and seismic activity. 3. GR (Godavari Rift): The Godavari Rift is a geological feature associated with the rifting and splitting of the Indian Plate. It's located in the Godavari River basin in southeastern India. 4. M (Madras Block): The Madras Block is a stable continental block in southern India. It's part of the Indian Plate and is not associated with active tectonic processes. 5. Mk (Malanjkhand): Malanjkhand is known for its copper deposits and is one of the largest copper mines in India. 6. MR (Mahanadi Rift): The Mahanadi Rift is a geological feature related to the rifting of the Indian Pl...

Evaluation and Characteristics of Himalayas

Time Period Event / Process Geological Evidence Key Terms & Concepts Late Precambrian – Palaeozoic (>541 Ma – ~250 Ma) India part of Gondwana , north bordered by Cimmerian Superterranes, separated from Eurasia by Paleo-Tethys Ocean . Pan-African granitic intrusions (~500 Ma), unconformity between Ordovician conglomerates & Cambrian sediments. Gondwana, Paleo-Tethys Ocean, Pan-African orogeny, unconformity, granitic intrusions, Cimmerian Superterranes. Early Carboniferous – Early Permian (~359 – 272 Ma) Rifting between India & Cimmerian Superterranes → Neotethys Ocean formation. Rift-related sediments, passive margin sequences. Rifting, Neotethys Ocean, passive continental margin. Norian (210 Ma) – Callovian (160–155 Ma) Gondwana split into East & West; India part of East Gondwana with Australia & Antarctica. Rift basins, oceanic crust formation. Continental breakup, East Gondwana, West Gondwana, oceanic crust. Early Cretaceous (130–125 Ma) India broke fr...

Seismicity and Earthquakes, Isostasy and Gravity

1. Seismicity and Earthquakes in the Indian Subcontinent Key Concept: Seismicity Definition : The occurrence, frequency, and magnitude of earthquakes in a region. In India, seismicity is high due to active tectonic processes . Plate Tectonics 🌏 Indian Plate : Moves northward at about 5 cm/year. Collision with Eurasian Plate : Causes intense crustal deformation , mountain building (Himalayas), and earthquakes. This is an example of a continental-continental collision zone . Seismic Zones of India Classified into Zone II, III, IV, V (Bureau of Indian Standards, BIS). Zone V = highest hazard (e.g., Himalayas, Northeast India). Zone II = lowest hazard (e.g., parts of peninsular India). Earthquake Hazards ⚠️ Himalayas: prone to large shallow-focus earthquakes due to active thrust faulting. Northeast India: complex subduction and strike-slip faults . Examples: 1897 Shillong Earthquake (Magnitude ~8.1) 1950 Assam–Tib...

Vector geoprocessing - Clipping, Erase, identify, Union & Intersection

Think of your vector data (points, lines, polygons) like shapes drawn on a transparent sheet. Geoprocessing is just cutting, joining, or comparing those shapes to get new shapes or information. 1. Clipping ✂️ Imagine you have a big map and you only want to keep a part of it (like cutting a photo into a smaller rectangle). You use another shape (like the boundary of a district) to "clip" and keep only what is inside. Result: Only the data inside the clipping shape remains. 2. Erase 🚫 Opposite of clipping. You remove (erase) the area of one shape from another shape. Example: You have a city map and want to remove all the park areas from it. 3. Identify 🔍 This checks which features from one layer fall inside (or touch) another layer. Example: Identify all the schools inside a flood zone. 4. Union 🤝 Combines two shapes together and keeps everything from both. Works like stacking two transparent sheets and redrawing t...