Skip to main content

Drought prone regions India

The geography of drought-prone regions in India is influenced by various factors, including climate, topography, and hydrology. Here's a brief overview of the geography of these regions:


1. Arid and Semi-Arid Climate: Many drought-prone regions in India fall within the arid and semi-arid climatic zones. These areas receive low and erratic rainfall, making them susceptible to droughts. States like Rajasthan, Gujarat, and parts of Maharashtra and Karnataka have arid or semi-arid climates, characterized by hot temperatures and sparse vegetation.


2. Geographical Features: Certain geographical features contribute to the prevalence of drought in specific regions. For example, the Thar Desert in Rajasthan and parts of Kutch in Gujarat are arid landscapes with scanty vegetation and limited water resources. These areas experience severe water scarcity during droughts.


3. Water Bodies and Rivers: Drought-prone regions may also lack significant water bodies or river systems, exacerbating water scarcity during dry spells. For instance, some parts of Maharashtra and Karnataka have limited access to perennial rivers, relying heavily on rainfall for water supply.


4. Topography: The topography of drought-prone regions can vary from flat plains to hilly terrain. In states like Madhya Pradesh, Uttar Pradesh, and Bihar, hilly and semi-hilly regions may experience water stress due to inadequate water retention capacity and runoff during droughts.


5. Groundwater Depletion: Over-exploitation of groundwater resources is a common issue in many drought-prone regions. Unsustainable agricultural practices, such as excessive groundwater pumping for irrigation, contribute to groundwater depletion, exacerbating drought conditions.


6. Vegetation Cover: Sparse vegetation cover in arid and semi-arid regions reduces the soil's ability to retain moisture, making these areas more vulnerable to drought. Deforestation and land degradation further compound the problem, leading to soil erosion and reduced water infiltration.


7. Rainfall Patterns: Irregular rainfall patterns, with uneven distribution and seasonal variations, are characteristic of drought-prone regions. Some areas may experience long dry spells interspersed with intense rainfall events, leading to water stress for agriculture and other activities.


Drought prone regions in India


1. Rajasthan: Rajasthan is the largest state in India and is predominantly arid or semi-arid. It experiences low and erratic rainfall, with most parts receiving less than 600 mm of rainfall annually. The Thar Desert covers a significant portion of the state, leading to water scarcity and frequent drought conditions.


2. Gujarat: Gujarat has a diverse climate, with some regions experiencing arid conditions. The Saurashtra region and parts of Kutch are particularly prone to drought due to low rainfall and high evaporation rates. Additionally, unsustainable water management practices exacerbate the situation.


3. Maharashtra: Maharashtra faces droughts frequently, especially in regions like Marathwada, Vidarbha, and parts of western Maharashtra. Factors such as irregular rainfall patterns, inadequate water management infrastructure, and over-exploitation of groundwater contribute to drought vulnerability.


4. Karnataka: Northern Karnataka, including districts like Gulbarga, Bidar, and Raichur, is prone to drought due to its semi-arid climate. Rainfall variability and poor water conservation measures aggravate the situation, impacting agriculture and livelihoods.


5. Andhra Pradesh and Telangana: These states have regions like Rayalaseema and Telangana, which face water scarcity and droughts due to irregular rainfall, unsustainable agricultural practices, and over-dependence on groundwater.


6. Tamil Nadu: Tamil Nadu experiences droughts, especially in its western districts like Coimbatore, Erode, and Salem. The state's water resources are strained due to low rainfall, excessive extraction of groundwater, and poor water management practices.


7. Madhya Pradesh: Certain parts of Madhya Pradesh, such as Bundelkhand and Malwa, are vulnerable to drought due to inadequate rainfall and soil moisture retention. Deforestation, soil erosion, and inefficient irrigation systems exacerbate the situation.


8. Uttar Pradesh: Eastern Uttar Pradesh, including districts like Bundelkhand, faces recurrent droughts due to inadequate monsoon rains and poor water management. Agricultural productivity suffers, impacting the livelihoods of millions.


9. Bihar: Some regions of Bihar, such as the North Bihar Plain, are susceptible to drought due to insufficient rainfall and inadequate irrigation facilities. The state's vulnerability is compounded by factors like soil degradation and floods in certain areas.


These regions face varying degrees of water scarcity and drought, affecting agricultural productivity, water availability for drinking and sanitation, and overall socio-economic development. Efforts to improve water management, promote sustainable agricultural practices, and build resilience to climate change are essential to mitigate the impacts of drought in these regions.


Comments

Popular posts from this blog

Geometric Correction

When satellite or aerial images are captured, they often contain distortions (errors in shape, scale, or position) caused by many factors — like Earth's curvature, satellite motion, terrain height (relief), or the Earth's rotation . These distortions make the image not properly aligned with real-world coordinates (latitude and longitude). 👉 Geometric correction is the process of removing these distortions so that every pixel in the image correctly represents its location on the Earth's surface. After geometric correction, the image becomes geographically referenced and can be used with maps and GIS data. Types  1. Systematic Correction Systematic errors are predictable and can be modeled mathematically. They occur due to the geometry and movement of the satellite sensor or the Earth. Common systematic distortions: Scan skew – due to the motion of the sensor as it scans the Earth. Mirror velocity variation – scanning mirror moves at a va...

RADIOMETRIC CORRECTION

  Radiometric correction is the process of removing sensor and environmental errors from satellite images so that the measured brightness values (Digital Numbers or DNs) truly represent the Earth's surface reflectance or radiance. In other words, it corrects for sensor defects, illumination differences, and atmospheric effects. 1. Detector Response Calibration Satellite sensors use multiple detectors to scan the Earth's surface. Sometimes, each detector responds slightly differently, causing distortions in the image. Calibration adjusts all detectors to respond uniformly. This includes: (a) De-Striping Problem: Sometimes images show light and dark vertical or horizontal stripes (banding). Caused by one or more detectors drifting away from their normal calibration — they record higher or lower values than others. Common in early Landsat MSS data. Effect: Every few lines (e.g., every 6th line) appear consistently brighter or darker. Soluti...

Atmospheric Correction

It is the process of removing the influence of the atmosphere from remotely sensed images so that the data accurately represent the true reflectance of Earth's surface . When a satellite sensor captures an image, the radiation reaching the sensor is affected by gases, water vapor, aerosols, and dust in the atmosphere. These factors scatter and absorb light, changing the brightness and color of the features seen in the image. Although these atmospheric effects are part of the recorded signal, they can distort surface reflectance values , especially when images are compared across different dates or sensors . Therefore, corrections are necessary to make data consistent and physically meaningful. 🔹 Why Do We Need Atmospheric Correction? To retrieve true surface reflectance – It separates the surface signal from atmospheric influence. To ensure comparability – Enables comparing images from different times, seasons, or sensors. To improve visual quality – Remo...

Supervised Classification

In the context of Remote Sensing (RS) and Digital Image Processing (DIP) , supervised classification is the process where an analyst defines "training sites" (Areas of Interest or ROIs) representing known land cover classes (e.g., Water, Forest, Urban). The computer then uses these training samples to teach an algorithm how to classify the rest of the image pixels. The algorithms used to classify these pixels are generally divided into two broad categories: Parametric and Nonparametric decision rules. Parametric Decision Rules These algorithms assume that the pixel values in the training data follow a specific statistical distribution—almost always the Gaussian (Normal) distribution (the "Bell Curve"). Key Concept: They model the data using statistical parameters: the Mean vector ( $\mu$ ) and the Covariance matrix ( $\Sigma$ ) . Analogy: Imagine trying to fit a smooth hill over your data points. If a new point lands high up on the hill, it belongs to that cl...

Pre During and Post Disaster

Disaster management is a structured approach aimed at reducing risks, responding effectively, and ensuring a swift recovery from disasters. It consists of three main phases: Pre-Disaster (Mitigation & Preparedness), During Disaster (Response), and Post-Disaster (Recovery). These phases involve various strategies, policies, and actions to protect lives, property, and the environment. Below is a breakdown of each phase with key concepts, terminologies, and examples. 1. Pre-Disaster Phase (Mitigation and Preparedness) Mitigation: This phase focuses on reducing the severity of a disaster by minimizing risks and vulnerabilities. It involves structural and non-structural measures. Hazard Identification: Recognizing potential natural and human-made hazards (e.g., earthquakes, floods, industrial accidents). Risk Assessment: Evaluating the probability and consequences of disasters using GIS, remote sensing, and historical data. Vulnerability Analysis: Identifying areas and p...