Skip to main content

History of GIS

1. 1832 - Early Spatial Analysis in Epidemiology:

   - Charles Picquet creates a map in Paris detailing cholera deaths per 1,000 inhabitants.

   - Utilizes halftone color gradients for visual representation.


2. 1854 - John Snow's Cholera Outbreak Analysis:

   - Epidemiologist John Snow identifies cholera outbreak source in London using spatial analysis.

   - Maps casualties' residences and nearby water sources to pinpoint the outbreak's origin.


3. Early 20th Century - Photozincography and Layered Mapping:

   - Photozincography development allows maps to be split into layers for vegetation, water, etc.

   - Introduction of layers, later a key feature in GIS, for separate printing plates.


4. Mid-20th Century - Computer Facilitation of Cartography:

   - Waldo Tobler's 1959 publication details using computers for cartography.

   - Computer hardware development, driven by nuclear weapon research, leads to broader mapping applications by early 1960s.


5. 1960 - Canada Geographic Information System (CGIS):

   - Roger Tomlinson develops the world's first operational GIS in Ottawa, Canada.

   - CGIS used for Canada Land Inventory, incorporating data on soils, agriculture, wildlife, etc.


6. 1964 - Laboratory for Computer Graphics and Spatial Analysis:

   - Howard T. Fisher establishes the Laboratory for Computer Graphics and Spatial Analysis at Harvard.

   - Develops influential software code and systems distributed worldwide.


7. Late 1970s to Early 1980s - Commercialization of GIS:

   - Public domain GIS systems MOSS and GRASS GIS in development.

   - Commercial vendors (M&S Computing, ESRI, Intergraph, Bentley Systems, CARIS, ERDAS) emerge with features from CGIS.


8. 1986 - Desktop GIS Emerges:

   - Mapping Display and Analysis System (MIDAS), the first desktop GIS, is released.

   - Renamed MapInfo for Windows in 1990, marking the shift from research to business.


9. Late 20th Century - Consolidation and Standardization:

   - Rapid growth in GIS systems consolidates on a few platforms by the end of the century.

   - Users begin exploring GIS data over the Internet, requiring format and transfer standards.


10. 21st Century - Integration with IT and Internet Infrastructure:

    - Integration of GIS with IT and Internet technologies like relational databases, cloud computing, SAAS, and mobile computing becomes a major trend.

    - Growing number of free, open-source GIS packages customized for specific tasks.





Comments

Popular posts from this blog

Supervised Classification

Image Classification in Remote Sensing Image classification in remote sensing involves categorizing pixels in an image into thematic classes to produce a map. This process is essential for land use and land cover mapping, environmental studies, and resource management. The two primary methods for classification are Supervised and Unsupervised Classification . Here's a breakdown of these methods and the key stages of image classification. 1. Types of Classification Supervised Classification In supervised classification, the analyst manually defines classes of interest (known as information classes ), such as "water," "urban," or "vegetation," and identifies training areas —sections of the image that are representative of these classes. Using these training areas, the algorithm learns the spectral characteristics of each class and applies them to classify the entire image. When to Use Supervised Classification:   - You have prior knowledge about the c...

History of GIS

The history of Geographic Information Systems (GIS) is rooted in early efforts to understand spatial relationships and patterns, long before the advent of digital computers. While modern GIS emerged in the mid-20th century with advances in computing, its conceptual foundations lie in cartography, spatial analysis, and thematic mapping. Early Roots of Spatial Analysis (Pre-1960s) One of the earliest documented applications of spatial analysis dates back to  1832 , when  Charles Picquet , a French geographer and cartographer, produced a cholera mortality map of Paris. In his report  Rapport sur la marche et les effets du cholĂ©ra dans Paris et le dĂ©partement de la Seine , Picquet used graduated color shading to represent cholera deaths per 1,000 inhabitants across 48 districts. This work is widely regarded as an early example of choropleth mapping and thematic cartography applied to epidemiology. A landmark moment in the history of spatial analysis occurred in  1854 , when  John Snow  inv...

Pre During and Post Disaster

Disaster management is a structured approach aimed at reducing risks, responding effectively, and ensuring a swift recovery from disasters. It consists of three main phases: Pre-Disaster (Mitigation & Preparedness), During Disaster (Response), and Post-Disaster (Recovery). These phases involve various strategies, policies, and actions to protect lives, property, and the environment. Below is a breakdown of each phase with key concepts, terminologies, and examples. 1. Pre-Disaster Phase (Mitigation and Preparedness) Mitigation: This phase focuses on reducing the severity of a disaster by minimizing risks and vulnerabilities. It involves structural and non-structural measures. Hazard Identification: Recognizing potential natural and human-made hazards (e.g., earthquakes, floods, industrial accidents). Risk Assessment: Evaluating the probability and consequences of disasters using GIS, remote sensing, and historical data. Vulnerability Analysis: Identifying areas and p...

Supervised Classification

In the context of Remote Sensing (RS) and Digital Image Processing (DIP) , supervised classification is the process where an analyst defines "training sites" (Areas of Interest or ROIs) representing known land cover classes (e.g., Water, Forest, Urban). The computer then uses these training samples to teach an algorithm how to classify the rest of the image pixels. The algorithms used to classify these pixels are generally divided into two broad categories: Parametric and Nonparametric decision rules. Parametric Decision Rules These algorithms assume that the pixel values in the training data follow a specific statistical distribution—almost always the Gaussian (Normal) distribution (the "Bell Curve"). Key Concept: They model the data using statistical parameters: the Mean vector ( $\mu$ ) and the Covariance matrix ( $\Sigma$ ) . Analogy: Imagine trying to fit a smooth hill over your data points. If a new point lands high up on the hill, it belongs to that cl...

Architecture of GIS

GIS architecture encompasses the overall design and organization of a Geographic Information System (GIS). The components of GIS architecture include hardware, software, data, people, and methods. The architecture determines how these components interact and work together to create an efficient GIS system. There are two main types of GIS architecture: client-server and web-based architecture. In client-server architecture, GIS software runs on a server and is accessed by users through client computers. The server is responsible for data storage, processing, and analysis, while the client is responsible for data visualization and user interaction. Multiple users can work on the same dataset simultaneously, making it ideal for collaborative work. In web-based architecture, the GIS software is accessed through a web browser, eliminating the need to install software on local machines. The GIS data and software are stored on a server and accessed through a web interface, making it ideal for...