Skip to main content

History of GIS

1. 1832 - Early Spatial Analysis in Epidemiology:

   - Charles Picquet creates a map in Paris detailing cholera deaths per 1,000 inhabitants.

   - Utilizes halftone color gradients for visual representation.


2. 1854 - John Snow's Cholera Outbreak Analysis:

   - Epidemiologist John Snow identifies cholera outbreak source in London using spatial analysis.

   - Maps casualties' residences and nearby water sources to pinpoint the outbreak's origin.


3. Early 20th Century - Photozincography and Layered Mapping:

   - Photozincography development allows maps to be split into layers for vegetation, water, etc.

   - Introduction of layers, later a key feature in GIS, for separate printing plates.


4. Mid-20th Century - Computer Facilitation of Cartography:

   - Waldo Tobler's 1959 publication details using computers for cartography.

   - Computer hardware development, driven by nuclear weapon research, leads to broader mapping applications by early 1960s.


5. 1960 - Canada Geographic Information System (CGIS):

   - Roger Tomlinson develops the world's first operational GIS in Ottawa, Canada.

   - CGIS used for Canada Land Inventory, incorporating data on soils, agriculture, wildlife, etc.


6. 1964 - Laboratory for Computer Graphics and Spatial Analysis:

   - Howard T. Fisher establishes the Laboratory for Computer Graphics and Spatial Analysis at Harvard.

   - Develops influential software code and systems distributed worldwide.


7. Late 1970s to Early 1980s - Commercialization of GIS:

   - Public domain GIS systems MOSS and GRASS GIS in development.

   - Commercial vendors (M&S Computing, ESRI, Intergraph, Bentley Systems, CARIS, ERDAS) emerge with features from CGIS.


8. 1986 - Desktop GIS Emerges:

   - Mapping Display and Analysis System (MIDAS), the first desktop GIS, is released.

   - Renamed MapInfo for Windows in 1990, marking the shift from research to business.


9. Late 20th Century - Consolidation and Standardization:

   - Rapid growth in GIS systems consolidates on a few platforms by the end of the century.

   - Users begin exploring GIS data over the Internet, requiring format and transfer standards.


10. 21st Century - Integration with IT and Internet Infrastructure:

    - Integration of GIS with IT and Internet technologies like relational databases, cloud computing, SAAS, and mobile computing becomes a major trend.

    - Growing number of free, open-source GIS packages customized for specific tasks.





Comments

Popular posts from this blog

Geography of Landslides. Mitigation and Resilience.

A landslide is a geological event in which a mass of rock, earth, or debris moves down a slope under the force of gravity. Landslides can range in size from small to large and can be triggered by natural events such as heavy rainfall, earthquakes, or volcanic activity, or by human activities such as construction or mining. The geography of landslides is affected by a variety of factors that can increase the likelihood of landslides occurring in a particular area. These factors include slope angle and steepness, the type of soil and rock present, the climate and weather patterns of the region, the presence or absence of vegetation, and human activities such as construction, mining, and deforestation. Areas with steep slopes are more prone to landslides because gravity has a stronger effect on loose soil and rock, making it more likely to move downhill. Similarly, areas with loose, sandy soil or weak, fractured rock are more prone to landslides because they are less stable and more easil...

Geography of Flood. Types. Charector.

The geography of floods refers to the characteristics and patterns of floods in different geographic regions. Floods can occur in various landscapes, such as mountains, plains, coastal areas, and urban environments. The geography of a region plays a significant role in determining the frequency, magnitude, and impacts of floods. Some of the factors that influence the geography of floods include: Topography: The shape and elevation of the land can affect the flow and accumulation of water during a flood. For example, flat terrain can lead to slow-moving and widespread flooding, while steep slopes can result in flash floods and landslides. Climate: Regions with high rainfall or snowmelt can experience more frequent and intense floods, while dry regions may experience flash floods due to sudden, heavy rainfall. Hydrology: The characteristics of a river basin, such as its size, shape, and water flow, can influence the severity of a flood. For example, large river basins with extensive floo...

Flood prone regions India

Floods are natural disasters characterized by the overflow of water onto normally dry land. Various factors contribute to floods, including intense rainfall, rapid snowmelt, storm surges from coastal storms, and the failure of dams or levees. The geographical explanation involves understanding the key components of flood-prone regions: 1. Proximity to Water Bodies:    Flood-prone regions are often situated near rivers, lakes, or coastal areas. These locations are more susceptible to flooding as they are in close proximity to large water sources that can overflow during heavy precipitation or storms. 2. Topography:    Low-lying areas with gentle slopes are prone to flooding. Water naturally flows to lower elevations, and flat terrains allow water to accumulate easily. Valleys and floodplains are common flood-prone areas due to their topographical characteristics. 3. Rainfall Patterns:    Regions with high and concentrated rainfall are more likely to experience flooding. Intense and prol...

Landslides. USGS

Landslides. TYPES OF LANDSLIDES The term "landslide" describes a wide variety of processes that result in the downward and outward movement of slope-forming materials including rock, soil, artificial fill, or a combination of these. The materials may move by falling, toppling, sliding, spreading, or flowing. The animated GIF shows a graphic illustration of different types of landslides, with the commonly accepted terminology describing their features. The various types of landslides can be differentiated by the kinds of material involved and the mode of movement.

Volcano

Large magma chamber Bedrock Conduit (pipe) Base Sill Dike Layers of ash emitted by the volcano Flank Layers of lava emitted by the volcano Throat Parasitic cone Lava flow Vent Crater Ash cloud