Skip to main content

History of GIS

1. 1832 - Early Spatial Analysis in Epidemiology:

   - Charles Picquet creates a map in Paris detailing cholera deaths per 1,000 inhabitants.

   - Utilizes halftone color gradients for visual representation.


2. 1854 - John Snow's Cholera Outbreak Analysis:

   - Epidemiologist John Snow identifies cholera outbreak source in London using spatial analysis.

   - Maps casualties' residences and nearby water sources to pinpoint the outbreak's origin.


3. Early 20th Century - Photozincography and Layered Mapping:

   - Photozincography development allows maps to be split into layers for vegetation, water, etc.

   - Introduction of layers, later a key feature in GIS, for separate printing plates.


4. Mid-20th Century - Computer Facilitation of Cartography:

   - Waldo Tobler's 1959 publication details using computers for cartography.

   - Computer hardware development, driven by nuclear weapon research, leads to broader mapping applications by early 1960s.


5. 1960 - Canada Geographic Information System (CGIS):

   - Roger Tomlinson develops the world's first operational GIS in Ottawa, Canada.

   - CGIS used for Canada Land Inventory, incorporating data on soils, agriculture, wildlife, etc.


6. 1964 - Laboratory for Computer Graphics and Spatial Analysis:

   - Howard T. Fisher establishes the Laboratory for Computer Graphics and Spatial Analysis at Harvard.

   - Develops influential software code and systems distributed worldwide.


7. Late 1970s to Early 1980s - Commercialization of GIS:

   - Public domain GIS systems MOSS and GRASS GIS in development.

   - Commercial vendors (M&S Computing, ESRI, Intergraph, Bentley Systems, CARIS, ERDAS) emerge with features from CGIS.


8. 1986 - Desktop GIS Emerges:

   - Mapping Display and Analysis System (MIDAS), the first desktop GIS, is released.

   - Renamed MapInfo for Windows in 1990, marking the shift from research to business.


9. Late 20th Century - Consolidation and Standardization:

   - Rapid growth in GIS systems consolidates on a few platforms by the end of the century.

   - Users begin exploring GIS data over the Internet, requiring format and transfer standards.


10. 21st Century - Integration with IT and Internet Infrastructure:

    - Integration of GIS with IT and Internet technologies like relational databases, cloud computing, SAAS, and mobile computing becomes a major trend.

    - Growing number of free, open-source GIS packages customized for specific tasks.





Comments

Popular posts from this blog

Optical Sensors in Remote Sensing

1. What Are Optical Sensors? Optical sensors are remote sensing instruments that detect solar radiation reflected or emitted from the Earth's surface in specific portions of the electromagnetic spectrum (EMS) . They mainly work in: Visible region (0.4–0.7 µm) Near-Infrared – NIR (0.7–1.3 µm) Shortwave Infrared – SWIR (1.3–3.0 µm) Thermal Infrared – TIR (8–14 µm) — emitted energy, not reflected Optical sensors capture spectral signatures of surface features. Each object reflects/absorbs energy differently, creating a unique spectral response pattern . a) Electromagnetic Spectrum (EMS) The continuous range of wavelengths. Optical sensing uses solar reflective bands and sometimes thermal bands . b) Spectral Signature The unique pattern of reflectance or absorbance of an object across wavelengths. Example: Vegetation reflects strongly in NIR Water absorbs strongly in NIR and SWIR (appears dark) c) Radiance and Reflectance Radi...

Radar Sensors in Remote Sensing

Radar sensors are active remote sensing instruments that use microwave radiation to detect and measure Earth's surface features. They transmit their own energy (radio waves) toward the Earth and record the backscattered signal that returns to the sensor. Since they do not depend on sunlight, radar systems can collect data: day or night through clouds, fog, smoke, and rain in all weather conditions This makes radar extremely useful for Earth observation. 1. Active Sensor A radar sensor produces and transmits its own microwaves. This is different from optical and thermal sensors, which depend on sunlight or emitted heat. 2. Microwave Region Radar operates in the microwave region of the electromagnetic spectrum , typically from 1 mm to 1 m wavelength. Common radar frequency bands: P-band (70 cm) L-band (23 cm) S-band (9 cm) C-band (5.6 cm) X-band (3 cm) Each band penetrates and interacts with surfaces differently: Lo...

Thermal Sensors in Remote Sensing

Thermal sensors are remote sensing instruments that detect naturally emitted thermal infrared (TIR) radiation from the Earth's surface. Unlike optical sensors (which detect reflected sunlight), thermal sensors measure heat energy emitted by objects because of their temperature. They work mainly in the Thermal Infrared region (8–14 µm) of the electromagnetic spectrum. 1. Thermal Infrared Radiation All objects above 0 Kelvin (absolute zero) emit electromagnetic radiation. This is explained by Planck's Radiation Law . For Earth's surface temperature range (about 250–330 K), the peak emitted radiation occurs in the 8–14 µm thermal window . Thus, thermal sensors detect emitted energy , not reflected sunlight. 2. Emissivity Emissivity is the efficiency with which a material emits thermal radiation. Values range from 0 to 1 : Water, vegetation → high emissivity (0.95–0.99) Bare soil → medium (0.85–0.95) Metals → low (0.1–0.3) E...

Geometric Correction

When satellite or aerial images are captured, they often contain distortions (errors in shape, scale, or position) caused by many factors — like Earth's curvature, satellite motion, terrain height (relief), or the Earth's rotation . These distortions make the image not properly aligned with real-world coordinates (latitude and longitude). 👉 Geometric correction is the process of removing these distortions so that every pixel in the image correctly represents its location on the Earth's surface. After geometric correction, the image becomes geographically referenced and can be used with maps and GIS data. Types  1. Systematic Correction Systematic errors are predictable and can be modeled mathematically. They occur due to the geometry and movement of the satellite sensor or the Earth. Common systematic distortions: Scan skew – due to the motion of the sensor as it scans the Earth. Mirror velocity variation – scanning mirror moves at a va...

LiDAR in Remote Sensing

LiDAR (Light Detection and Ranging) is an active remote sensing technology that uses laser pulses to measure distances to the Earth's surface and create high-resolution 3D maps . LiDAR sensors emit short pulses of laser light (usually in the near-infrared range) and measure the time it takes for the pulse to return after hitting an object. Because LiDAR measures distance very precisely, it is excellent for mapping: terrain vegetation height buildings forests coastlines flood plains ✅ 1. Active Sensor LiDAR sends its own laser energy, unlike passive sensors that rely on sunlight. ✅ 2. Laser Pulse LiDAR emits thousands of pulses per second (even millions). Wavelengths commonly used: Near-Infrared (NIR) → land and vegetation mapping Green (532 nm) → water/ bathymetry (penetrates shallow water) ✅ 3. Time of Flight (TOF) The sensor measures the time taken for the laser to travel: from the sensor → to the sur...