Skip to main content

History of GIS

1. 1832 - Early Spatial Analysis in Epidemiology:

   - Charles Picquet creates a map in Paris detailing cholera deaths per 1,000 inhabitants.

   - Utilizes halftone color gradients for visual representation.


2. 1854 - John Snow's Cholera Outbreak Analysis:

   - Epidemiologist John Snow identifies cholera outbreak source in London using spatial analysis.

   - Maps casualties' residences and nearby water sources to pinpoint the outbreak's origin.


3. Early 20th Century - Photozincography and Layered Mapping:

   - Photozincography development allows maps to be split into layers for vegetation, water, etc.

   - Introduction of layers, later a key feature in GIS, for separate printing plates.


4. Mid-20th Century - Computer Facilitation of Cartography:

   - Waldo Tobler's 1959 publication details using computers for cartography.

   - Computer hardware development, driven by nuclear weapon research, leads to broader mapping applications by early 1960s.


5. 1960 - Canada Geographic Information System (CGIS):

   - Roger Tomlinson develops the world's first operational GIS in Ottawa, Canada.

   - CGIS used for Canada Land Inventory, incorporating data on soils, agriculture, wildlife, etc.


6. 1964 - Laboratory for Computer Graphics and Spatial Analysis:

   - Howard T. Fisher establishes the Laboratory for Computer Graphics and Spatial Analysis at Harvard.

   - Develops influential software code and systems distributed worldwide.


7. Late 1970s to Early 1980s - Commercialization of GIS:

   - Public domain GIS systems MOSS and GRASS GIS in development.

   - Commercial vendors (M&S Computing, ESRI, Intergraph, Bentley Systems, CARIS, ERDAS) emerge with features from CGIS.


8. 1986 - Desktop GIS Emerges:

   - Mapping Display and Analysis System (MIDAS), the first desktop GIS, is released.

   - Renamed MapInfo for Windows in 1990, marking the shift from research to business.


9. Late 20th Century - Consolidation and Standardization:

   - Rapid growth in GIS systems consolidates on a few platforms by the end of the century.

   - Users begin exploring GIS data over the Internet, requiring format and transfer standards.


10. 21st Century - Integration with IT and Internet Infrastructure:

    - Integration of GIS with IT and Internet technologies like relational databases, cloud computing, SAAS, and mobile computing becomes a major trend.

    - Growing number of free, open-source GIS packages customized for specific tasks.





Comments

Popular posts from this blog

Platforms in Remote Sensing

In remote sensing, a platform is the physical structure or vehicle that carries a sensor (camera, scanner, radar, etc.) to observe and collect information about the Earth's surface. Platforms are classified mainly by their altitude and mobility : Ground-Based Platforms Definition : Sensors mounted on the Earth's surface or very close to it. Examples : Tripods, towers, ground vehicles, handheld instruments. Applications : Calibration and validation of satellite data Detailed local studies (e.g., soil properties, vegetation health, air quality) Strength : High spatial detail but limited coverage. Airborne Platforms Definition : Sensors carried by aircraft, balloons, or drones (UAVs). Altitude : A few hundred meters to ~20 km. Examples : Airplanes with multispectral scanners UAVs with high-resolution cameras or LiDAR High-altitude balloons (stratospheric platforms) Applications : Local-to-regional mapping ...

Types of Remote Sensing

Remote Sensing means collecting information about the Earth's surface without touching it , usually using satellites, aircraft, or drones . There are different types of remote sensing based on the energy source and the wavelength region used. 🛰️ 1. Active Remote Sensing 📘 Concept: In active remote sensing , the sensor sends out its own energy (like a signal or pulse) to the Earth's surface. The sensor then records the reflected or backscattered energy that comes back from the surface. ⚙️ Key Terminology: Transmitter: sends energy (like a radar pulse or laser beam). Receiver: detects the energy that bounces back. Backscatter: energy that is reflected back to the sensor. 📊 Examples of Active Sensors: RADAR (Radio Detection and Ranging): Uses microwave signals to detect surface roughness, soil moisture, or ocean waves. LiDAR (Light Detection and Ranging): Uses laser light (near-infrared) to measure elevation, vegetation...

Resolution of Sensors in Remote Sensing

Spatial Resolution 🗺️ Definition : The smallest size of an object on the ground that a sensor can detect. Measured as : The size of a pixel on the ground (in meters). Example : Landsat → 30 m (each pixel = 30 × 30 m on Earth). WorldView-3 → 0.31 m (very detailed, you can see cars). Fact : Higher spatial resolution = finer details, but smaller coverage. Spectral Resolution 🌈 Definition : The ability of a sensor to capture information in different parts (bands) of the electromagnetic spectrum . Measured as : The number and width of spectral bands. Types : Panchromatic (1 broad band, e.g., black & white image). Multispectral (several broad bands, e.g., Landsat with 7–13 bands). Hyperspectral (hundreds of very narrow bands, e.g., AVIRIS). Fact : Higher spectral resolution = better identification of materials (e.g., minerals, vegetation types). Radiometric Resolution 📊 Definition : The ability of a sensor to ...

geostationary and sun-synchronous

Orbital characteristics of Remote sensing satellite geostationary and sun-synchronous  Orbits in Remote Sensing Orbit = the path a satellite follows around the Earth. The orbit determines what part of Earth the satellite can see , how often it revisits , and what applications it is good for . Remote sensing satellites mainly use two standard orbits : Geostationary Orbit (GEO) Sun-Synchronous Orbit (SSO)  Geostationary Satellites (GEO) Characteristics Altitude : ~35,786 km above the equator. Period : 24 hours → same as Earth's rotation. Orbit type : Circular, directly above the equator . Appears "stationary" over one fixed point on Earth. Concepts & Terminologies Geosynchronous = orbit period matches Earth's rotation (24h). Geostationary = special type of geosynchronous orbit directly above equator → looks fixed. Continuous coverage : Can monitor the same area all the time. Applications Weather...

Man-Made Disasters

  A man-made disaster (also called a technological disaster or anthropogenic disaster ) is a catastrophic event caused directly or indirectly by human actions , rather than natural processes. These disasters arise due to negligence, error, industrial activity, conflict, or misuse of technology , and often result in loss of life, property damage, and environmental degradation . Terminology: Anthropogenic = originating from human activity. Technological hazard = hazard caused by failure or misuse of technology or industry. 🔹 Conceptual Understanding Man-made disasters are part of the Disaster Management Cycle , which includes: Prevention – avoiding unsafe practices. Mitigation – reducing disaster impact (e.g., safety regulations). Preparedness – training and planning. Response – emergency actions after the disaster. Recovery – long-term rebuilding and policy correction. These disasters are predictable and preventable through strong...