Skip to main content

Supervised Classification. Remote Sensing

Image classification.

Supervised classification

Unsupervised classification.


Stages:

Raw data

Preprocessing

Signature collection

Signature evaluation

Classification 

.

Information Class and Spectral Class

Information class: It is a class specified by an image analyst. It refers to the information to be extracted.


Spectral class: It a class which includes similar gray-level

vectors in the multispectral space. Spectral classes are groups of pixels that are uniform (or near-similar) with respect to their brightness values.

.

Supervised and Unsupervised

Supervised (Information Class)


Have a set of desired dasses in mind then create the appropriate signatures from the data.


Appropriate

• when one wants to identify relatively few dasses

. when one has selected training sites that can be verified with ground truth data

• when one can identify distinct, homogeneous regions that represent each dass.


Unsupervised (Spectral Class)

Classes to be determined by spectral distinctions that are inherent in the data → define the dasses later.

Appropriate-

when one wants to define many dasses easily, and then identify dasses.

.

Training for Classification


Computer system must be trained to recognize patterns in image data.


Process of defining the criteria by which these patterns are recognized.


Supervised Training is controlled by the analyst.


Select pixels that represent patterns instruct the computer system to identify pixels with similar characteristics.


More accurate but requires high skill.


Unsupervised Training is computer-automated.


Specify number of classes the computer uncovers statistical classes.


Less accurate and less skill required.

.

Supervised Classification

Common decision rules:


Parametric decision rules:

Minimum distance classifier / Centroid classifier.

Maximum likelihood / Bayesian classification.


Nonparametric decision rule:

Parallelepiped classifier.

Feature space classifier.

.

Minimum Distance/Centroid Classifier:

Calculates the spectral distance between the candidate pixel and the mean of each signature.

The candidate pixel is assigned to the class with the closest mean.

Calculates mean of the spectral values for the training set in each band and for each category.

Measures the distance from a pixel of unknown identify to the mean of each category.

Assigns the pixel to the category with the shortest distance.

Assigns a pixel as "unknown" if the pixel is beyond the distances defined by the analyst.

Methods of calculation Minimum Spectral Distance:

Euclidean distance: based on the Pythagorean theorem

Mahalanobis distance:

■ Variance-Covariance matrix are used (normal distribution of DN is assumed)

.

Maximum Likelihood Classifier:

• This classifier quantitatively evaluates both the variance and covariance of the trained spectral response patterns when deciding the fate of an unknown pixel.

■To do this the classifier assumes that the distribution of points for each cover-type are normally distributed.

• Under this assumption, the distribution of a category response can be completely described by the mean vector and the covariance matrix.

■ Given these values, the classifier computes the probability that unknown pixels will belong to a particular category.

Probability function is calculated from the inputs.

Assumes probabilities are equal for all dasses.

Each pixel is then judged as to the dass to which it most probably belong.

.

Parallelepiped Classifier:

Based on Maximum and Minimum values in each signature.

..

Feature Space Classifier:

Based on discrete objects (polygons) in a feature space image.

More accurate than parallelepiped.

Comments

Popular posts from this blog

Artisan Wells Basins

Artisan Wells and Basins Artesian wells are a type of well that harnesses the natural pressure of water trapped underground to force water to the surface without pumping. This phenomenon occurs in specific geological formations known as artesian basins . Key Terminologies and Concepts Aquifer: A geological formation that can store and transmit water. It is typically made up of porous rocks or sediments like sandstone or gravel. Confined Aquifer: An aquifer that is sandwiched between two impermeable layers (like clay or shale) that prevent water from escaping. Artesian Basin: A geological structure where a confined aquifer is tilted and has a recharge area at a higher elevation than the discharge area. This creates a pressure gradient that forces water to flow upwards. Potentiometric Surface: The theoretical level to which water would rise in a well drilled into an artesian aquifer if there were no restrictions. It is determined by the pressure head in the aquifer. Flowing Artesian

Groundwater – Porosity and Permeability

Groundwater refers to the water that resides beneath the Earth's surface in the pores and crevices of rock, sediment, and soil. Two key properties that influence the movement and storage of groundwater are porosity and permeability: 1. Porosity:    - Definition: Porosity refers to the volume percentage of void spaces (pores or openings) in a geological material, such as soil or rock.    - Role: Porosity determines how much water a subsurface material can hold. It is a measure of the material's capacity to store water.    - Factors: Porosity is influenced by the size and arrangement of particles within the material. Highly porous materials have more void spaces, while less porous materials have fewer.    - Units: Porosity is expressed as a percentage, with 0% indicating complete solidity (no pore spaces) and 100% indicating complete void space. 2. Permeability:    - Definition: Permeability refers to the ability of a geological material to transmit fluids, such as water. It meas

Water harvesting

Water harvesting 

Aquifer

  1. Aquifers:    - Definition: Aquifers are rocks and soils that possess both porosity and permeability.    - Porosity: Refers to the presence of open spaces (pores) within the material.    - Permeability: Indicates the ability of the material to transmit fluids (water, in this context) through those pores. 2. Aquicludes:    - Definition: Aquicludes are rocks and soils that have porosity but lack permeability.    - Porosity: They contain open spaces, but...    - Permeability: ...are not conducive to the easy movement of fluids due to the lack of interconnected pathways. 3. Aquitards:    - Definition: Aquitards have porosity, but their permeability is limited.    - Porosity: They have open spaces...    - Limited Permeability: ...yet the movement of fluids is slower or restricted compared to aquifers due to lower permeability. 4. Aquifuge:    - Definition: Aquifuge rocks and soils have neither porosity nor permeability.    - No Porosity: They lack open spaces for water to be stored...  

Water Table

Water Table, Saturated and Unsaturated Zones, Perched Water Table, and Springs Water Table Definition: The upper surface of the saturated zone in an aquifer. Fluctuations: The water table can fluctuate due to factors like precipitation, groundwater extraction, and seasonal changes. Importance: It determines the availability of groundwater for wells and other sources. Saturated and Unsaturated Zones Saturated Zone: The area below the water table where all the pores and spaces in the rock or sediment are filled with water. Unsaturated Zone: The area above the water table where the pores and spaces contain both water and air. This zone is also known as the vadose zone. Perched Water Table Definition: A localized water table that occurs above the main water table due to a lens of impermeable material within the unsaturated zone. Formation: Perched water tables often form in areas with lenses of clay or other impermeable materials. Impact: Perched water tables can create localize