Skip to main content

Supervised Classification. Remote Sensing

Image classification.

Supervised classification

Unsupervised classification.


Stages:

Raw data

Preprocessing

Signature collection

Signature evaluation

Classification 

.

Information Class and Spectral Class

Information class: It is a class specified by an image analyst. It refers to the information to be extracted.


Spectral class: It a class which includes similar gray-level

vectors in the multispectral space. Spectral classes are groups of pixels that are uniform (or near-similar) with respect to their brightness values.

.

Supervised and Unsupervised

Supervised (Information Class)


Have a set of desired dasses in mind then create the appropriate signatures from the data.


Appropriate

β€’ when one wants to identify relatively few dasses

. when one has selected training sites that can be verified with ground truth data

β€’ when one can identify distinct, homogeneous regions that represent each dass.


Unsupervised (Spectral Class)

Classes to be determined by spectral distinctions that are inherent in the data β†’ define the dasses later.

Appropriate-

when one wants to define many dasses easily, and then identify dasses.

.

Training for Classification


Computer system must be trained to recognize patterns in image data.


Process of defining the criteria by which these patterns are recognized.


Supervised Training is controlled by the analyst.


Select pixels that represent patterns instruct the computer system to identify pixels with similar characteristics.


More accurate but requires high skill.


Unsupervised Training is computer-automated.


Specify number of classes the computer uncovers statistical classes.


Less accurate and less skill required.

.

Supervised Classification

Common decision rules:


Parametric decision rules:

Minimum distance classifier / Centroid classifier.

Maximum likelihood / Bayesian classification.


Nonparametric decision rule:

Parallelepiped classifier.

Feature space classifier.

.

Minimum Distance/Centroid Classifier:

Calculates the spectral distance between the candidate pixel and the mean of each signature.

The candidate pixel is assigned to the class with the closest mean.

Calculates mean of the spectral values for the training set in each band and for each category.

Measures the distance from a pixel of unknown identify to the mean of each category.

Assigns the pixel to the category with the shortest distance.

Assigns a pixel as "unknown" if the pixel is beyond the distances defined by the analyst.

Methods of calculation Minimum Spectral Distance:

Euclidean distance: based on the Pythagorean theorem

Mahalanobis distance:

β–  Variance-Covariance matrix are used (normal distribution of DN is assumed)

.

Maximum Likelihood Classifier:

β€’ This classifier quantitatively evaluates both the variance and covariance of the trained spectral response patterns when deciding the fate of an unknown pixel.

β– To do this the classifier assumes that the distribution of points for each cover-type are normally distributed.

β€’ Under this assumption, the distribution of a category response can be completely described by the mean vector and the covariance matrix.

β–  Given these values, the classifier computes the probability that unknown pixels will belong to a particular category.

Probability function is calculated from the inputs.

Assumes probabilities are equal for all dasses.

Each pixel is then judged as to the dass to which it most probably belong.

.

Parallelepiped Classifier:

Based on Maximum and Minimum values in each signature.

..

Feature Space Classifier:

Based on discrete objects (polygons) in a feature space image.

More accurate than parallelepiped.

Comments

Popular posts from this blog

KSHEC Scholarship 2024-25

KSHEC Scholarship 2024-25 Alert! First-Year UG Students Only, Don't Miss This Golden Opportunity! πŸ’‘βœ¨ Are you a first-year undergraduate student studying in a Government or Aided College in Kerala? Do you need financial assistance to continue your education without stress? The Kerala State Higher Education Council (KSHEC) Scholarship is here to support YOU!  This scholarship is a lifeline for deserving students, helping them focus on their studies without worrying about financial burdens. If you meet the criteria, APPLY NOW and take a step towards a brighter future! 🌟 βœ… Simple Online Application – Quick & easy process!  πŸ“Œ Who Can Apply? βœ”οΈ First-year UG students ONLY βœ”οΈ Must be studying in an Arts & Science Government or Aided college in Kerala βœ”οΈ Professional Course students are not eligible  πŸ”Ή Scholarship Amounts Per Year: πŸ“Œ 1st Year FYUGP – β‚Ή12,000 πŸ“Œ 2nd Year FYUGP – β‚Ή18,000 πŸ“Œ 3rd Year FYUGP – β‚Ή24,000 πŸ“Œ 4th Year FYUGP – β‚Ή40,000 πŸ“Œ 5th Year PG – β‚Ή60,000  Great News...

Disaster Management

1. Disaster Risk Analysis β†’ Disaster Risk Reduction β†’ Disaster Management Cycle Disaster Risk Analysis is the first step in managing disasters. It involves assessing potential hazards, identifying vulnerable populations, and estimating possible impacts. Once risks are identified, Disaster Risk Reduction (DRR) strategies come into play. DRR aims to reduce risk and enhance resilience through planning, infrastructure development, and policy enforcement. The Disaster Management Cycle then ensures a structured approach by dividing actions into pre-disaster, during-disaster, and post-disaster phases . Example Connection: Imagine a coastal city prone to cyclones: Risk Analysis identifies low-lying areas and weak infrastructure. Risk Reduction includes building seawalls, enforcing strict building codes, and training residents for emergency situations. The Disaster Management Cycle ensures ongoing preparedness, immediate response during a cyclone, and long-term recovery afterw...

Pre During and Post Disaster

Disaster management is a structured approach aimed at reducing risks, responding effectively, and ensuring a swift recovery from disasters. It consists of three main phases: Pre-Disaster (Mitigation & Preparedness), During Disaster (Response), and Post-Disaster (Recovery). These phases involve various strategies, policies, and actions to protect lives, property, and the environment. Below is a breakdown of each phase with key concepts, terminologies, and examples. 1. Pre-Disaster Phase (Mitigation and Preparedness) Mitigation: This phase focuses on reducing the severity of a disaster by minimizing risks and vulnerabilities. It involves structural and non-structural measures. Hazard Identification: Recognizing potential natural and human-made hazards (e.g., earthquakes, floods, industrial accidents). Risk Assessment: Evaluating the probability and consequences of disasters using GIS, remote sensing, and historical data. Vulnerability Analysis: Identifying areas and p...

Recovery and Rehabilitation

Disaster management involves several phases, including mitigation, preparedness, response, recovery, and rehabilitation . Recovery and rehabilitation are post-disaster activities that aim to restore normalcy and improve resilience in affected areas. 1. Recovery Recovery is the long-term process of rebuilding communities, infrastructure, economy, and social systems after a disaster. It focuses on restoring normalcy while incorporating resilience measures to withstand future disasters. Short-term Recovery – Immediate efforts within weeks or months to restore essential services (e.g., water, electricity, healthcare, shelter). Long-term Recovery – Efforts that take months to years, including rebuilding infrastructure, economic revitalization, and mental health support. Resilience – The ability of a community to recover quickly and adapt to future disasters. Livelihood Restoration – Providing economic support to affected populations through job creation, skill training, a...

Mapping Process

The mapping process involves several systematic steps to transform real-world spatial information into a readable, accurate, and useful representation. Below is a structured explanation of each step in the mapping process, with key concepts, terminologies, and examples. 1. Defining the Purpose of the Map Before creating a map, it is essential to determine its purpose and audience . Different maps serve different objectives, such as navigation, analysis, or communication. Types of Maps Based on Purpose: Thematic Maps: Focus on specific subjects (e.g., climate maps, population density maps). Topographic Maps: Show natural and human-made features (e.g., contour maps, landform maps). Tourist Maps: Highlight attractions, roads, and landmarks for travelers. Cadastral Maps: Used in land ownership and property boundaries. Navigational Maps: Used in GPS systems for wayfinding. Example: A disaster risk map for floods will highlight flood-prone areas, emergency shelters, and ...