Skip to main content

Supervised Classification. Remote Sensing

Image classification.

Supervised classification

Unsupervised classification.


Stages:

Raw data

Preprocessing

Signature collection

Signature evaluation

Classification 

.

Information Class and Spectral Class

Information class: It is a class specified by an image analyst. It refers to the information to be extracted.


Spectral class: It a class which includes similar gray-level

vectors in the multispectral space. Spectral classes are groups of pixels that are uniform (or near-similar) with respect to their brightness values.

.

Supervised and Unsupervised

Supervised (Information Class)


Have a set of desired dasses in mind then create the appropriate signatures from the data.


Appropriate

• when one wants to identify relatively few dasses

. when one has selected training sites that can be verified with ground truth data

• when one can identify distinct, homogeneous regions that represent each dass.


Unsupervised (Spectral Class)

Classes to be determined by spectral distinctions that are inherent in the data → define the dasses later.

Appropriate-

when one wants to define many dasses easily, and then identify dasses.

.

Training for Classification


Computer system must be trained to recognize patterns in image data.


Process of defining the criteria by which these patterns are recognized.


Supervised Training is controlled by the analyst.


Select pixels that represent patterns instruct the computer system to identify pixels with similar characteristics.


More accurate but requires high skill.


Unsupervised Training is computer-automated.


Specify number of classes the computer uncovers statistical classes.


Less accurate and less skill required.

.

Supervised Classification

Common decision rules:


Parametric decision rules:

Minimum distance classifier / Centroid classifier.

Maximum likelihood / Bayesian classification.


Nonparametric decision rule:

Parallelepiped classifier.

Feature space classifier.

.

Minimum Distance/Centroid Classifier:

Calculates the spectral distance between the candidate pixel and the mean of each signature.

The candidate pixel is assigned to the class with the closest mean.

Calculates mean of the spectral values for the training set in each band and for each category.

Measures the distance from a pixel of unknown identify to the mean of each category.

Assigns the pixel to the category with the shortest distance.

Assigns a pixel as "unknown" if the pixel is beyond the distances defined by the analyst.

Methods of calculation Minimum Spectral Distance:

Euclidean distance: based on the Pythagorean theorem

Mahalanobis distance:

■ Variance-Covariance matrix are used (normal distribution of DN is assumed)

.

Maximum Likelihood Classifier:

• This classifier quantitatively evaluates both the variance and covariance of the trained spectral response patterns when deciding the fate of an unknown pixel.

■To do this the classifier assumes that the distribution of points for each cover-type are normally distributed.

• Under this assumption, the distribution of a category response can be completely described by the mean vector and the covariance matrix.

■ Given these values, the classifier computes the probability that unknown pixels will belong to a particular category.

Probability function is calculated from the inputs.

Assumes probabilities are equal for all dasses.

Each pixel is then judged as to the dass to which it most probably belong.

.

Parallelepiped Classifier:

Based on Maximum and Minimum values in each signature.

..

Feature Space Classifier:

Based on discrete objects (polygons) in a feature space image.

More accurate than parallelepiped.

Comments

Popular posts from this blog

Photogrammetry – Types of Photographs

In photogrammetry, aerial photographs are categorized based on camera orientation , coverage , and spectral sensitivity . Below is a breakdown of the major types: 1️⃣ Based on Camera Axis Orientation Type Description Key Feature Vertical Photo Taken with the camera axis pointing directly downward (within 3° of vertical). Used for maps and measurements Oblique Photo Taken with the camera axis tilted away from vertical. Covers more area but with distortions Low Oblique: Horizon not visible High Oblique: Horizon visible 2️⃣ Based on Number of Photos Taken Type Description Single Photo One image taken of an area Stereoscopic Pair Two overlapping photos for 3D viewing and depth analysis Strip or Mosaic Series of overlapping photos covering a long area, useful in mapping large regions 3️⃣ Based on Spectral Sensitivity Type Description Application Panchromatic Captures images in black and white General mapping Infrared (IR) Sensitive to infrared radiation Veget...

Photogrammetry – Geometry of a Vertical Photograph

Photogrammetry is the science of making measurements from photographs, especially for mapping and surveying. When the camera axis is perpendicular (vertical) to the ground, the photo is called a vertical photograph , and its geometry is central to accurate mapping.  Elements of Vertical Photo Geometry In a vertical aerial photograph , the geometry is governed by the central projection principle. Here's how it works: 1. Principal Point (P) The point on the photo where the optical axis of the camera intersects the photo plane. It's the geometric center of the photo. 2. Nadir Point (N) The point on the ground directly below the camera at the time of exposure. Ideally, in a perfect vertical photo, the nadir and principal point coincide. 3. Photo Center (C) Usually coincides with the principal point in a vertical photo. 4. Ground Coordinates (X, Y, Z) Real-world (map) coordinates of objects photographed. 5. Flying Height (H) He...

Raster Data Structure

Raster Data Raster data is like a digital photo made up of small squares called cells or pixels . Each cell shows something about that spot — like how high it is (elevation), how hot it is (temperature), or what kind of land it is (forest, water, etc.). Think of it like a graph paper where each box is colored to show what's there. Key Points What's in the cell? Each cell stores information — for example, "water" or "forest." Where is the cell? The cell's location comes from its place in the grid (like row 3, column 5). We don't need to store its exact coordinates. How Do We Decide a Cell's Value? Sometimes, one cell covers more than one thing (like part forest and part water). To choose one value , we can: Center Point: Use whatever feature is in the middle. Most Area: Use the feature that takes up the most space in the cell. Most Important: Use the most important feature (like a road or well), even if it...

Photogrammetry

Photogrammetry is the science of taking measurements from photographs —especially to create maps, models, or 3D images of objects, land, or buildings. Imagine you take two pictures of a mountain from slightly different angles. Photogrammetry uses those photos to figure out the shape, size, and position of the mountain—just like our eyes do when we see in 3D! Concepts and Terminologies 1. Photograph A picture captured by a camera , either from the ground (terrestrial) or from above (aerial or drone). 2. Stereo Pair Two overlapping photos taken from different angles. When seen together, they help create a 3D effect —just like how two human eyes work. 3. Overlap To get a 3D model, photos must overlap each other: Forward overlap : Between two photos in a flight line (usually 60–70%) Side overlap : Between adjacent flight lines (usually 30–40%) 4. Scale The ratio of the photo size to real-world size. Example: A 1:10,000 scale photo means 1 cm on the photo...

Logical Data Model in GIS

In GIS, a logical data model defines how data is structured and interrelated—independent of how it is physically stored or implemented. It serves as a blueprint for designing databases, focusing on the organization of entities, their attributes, and relationships, without tying them to a specific database technology. Key Features Abstraction : The logical model operates at an abstract level, emphasizing the conceptual structure of data rather than the technical details of storage or implementation. Entity-Attribute Relationships : It identifies key entities (objects or concepts) and their attributes (properties), as well as the logical relationships between them. Business Rules : Business logic is embedded in the model to enforce rules, constraints, and conditions that ensure data consistency and accuracy. Technology Independence : The logical model is platform-agnostic—it is not tied to any specific database system or storage format. Visual Representat...