Skip to main content

Supervised Classification. Remote Sensing

Image classification.

Supervised classification

Unsupervised classification.


Stages:

Raw data

Preprocessing

Signature collection

Signature evaluation

Classification 

.

Information Class and Spectral Class

Information class: It is a class specified by an image analyst. It refers to the information to be extracted.


Spectral class: It a class which includes similar gray-level

vectors in the multispectral space. Spectral classes are groups of pixels that are uniform (or near-similar) with respect to their brightness values.

.

Supervised and Unsupervised

Supervised (Information Class)


Have a set of desired dasses in mind then create the appropriate signatures from the data.


Appropriate

• when one wants to identify relatively few dasses

. when one has selected training sites that can be verified with ground truth data

• when one can identify distinct, homogeneous regions that represent each dass.


Unsupervised (Spectral Class)

Classes to be determined by spectral distinctions that are inherent in the data → define the dasses later.

Appropriate-

when one wants to define many dasses easily, and then identify dasses.

.

Training for Classification


Computer system must be trained to recognize patterns in image data.


Process of defining the criteria by which these patterns are recognized.


Supervised Training is controlled by the analyst.


Select pixels that represent patterns instruct the computer system to identify pixels with similar characteristics.


More accurate but requires high skill.


Unsupervised Training is computer-automated.


Specify number of classes the computer uncovers statistical classes.


Less accurate and less skill required.

.

Supervised Classification

Common decision rules:


Parametric decision rules:

Minimum distance classifier / Centroid classifier.

Maximum likelihood / Bayesian classification.


Nonparametric decision rule:

Parallelepiped classifier.

Feature space classifier.

.

Minimum Distance/Centroid Classifier:

Calculates the spectral distance between the candidate pixel and the mean of each signature.

The candidate pixel is assigned to the class with the closest mean.

Calculates mean of the spectral values for the training set in each band and for each category.

Measures the distance from a pixel of unknown identify to the mean of each category.

Assigns the pixel to the category with the shortest distance.

Assigns a pixel as "unknown" if the pixel is beyond the distances defined by the analyst.

Methods of calculation Minimum Spectral Distance:

Euclidean distance: based on the Pythagorean theorem

Mahalanobis distance:

■ Variance-Covariance matrix are used (normal distribution of DN is assumed)

.

Maximum Likelihood Classifier:

• This classifier quantitatively evaluates both the variance and covariance of the trained spectral response patterns when deciding the fate of an unknown pixel.

■To do this the classifier assumes that the distribution of points for each cover-type are normally distributed.

• Under this assumption, the distribution of a category response can be completely described by the mean vector and the covariance matrix.

■ Given these values, the classifier computes the probability that unknown pixels will belong to a particular category.

Probability function is calculated from the inputs.

Assumes probabilities are equal for all dasses.

Each pixel is then judged as to the dass to which it most probably belong.

.

Parallelepiped Classifier:

Based on Maximum and Minimum values in each signature.

..

Feature Space Classifier:

Based on discrete objects (polygons) in a feature space image.

More accurate than parallelepiped.

Comments

Popular posts from this blog

The global dimensions of disaster

Disasters are not merely natural occurrences but complex interactions between natural hazards and human vulnerabilities. To effectively address disaster risk, we must consider several interconnected dimensions: 1. Vulnerability: Definition: The susceptibility of individuals, communities, or assets to harm from a disaster. Factors: Socioeconomic conditions, geographic location, and environmental factors influence vulnerability. Example: Communities with high poverty rates and limited access to resources are more vulnerable to disaster impacts. 2. Exposure: Definition: The degree to which people, property, and infrastructure are located in hazard-prone areas. Factors: Population density, land use patterns, and infrastructure development influence exposure. Example: Coastal cities with high population density are highly exposed to hurricane and tsunami risks. 3. Capacity: Definition: A community's ability to prepare for, respond to, and recover from disasters. Factors: Strong ...

Overview of Disasters in India

India's Vulnerability to Natural Disasters India's diverse geography and climate make it highly susceptible to a range of natural disasters. These events, including earthquakes, tsunamis, floods, droughts, cyclones, and landslides, can have devastating consequences for millions of people and the economy. Major Natural Disasters Affecting India: Earthquakes: Tectonic Setting: India's position on the Indian Plate, which is colliding with the Eurasian Plate, makes it prone to seismic activity. Impact: Earthquakes can cause widespread destruction, including building collapses, landslides, and tsunamis. The 2001 Gujarat earthquake is a prime example of such devastation. Tsunamis: Oceanic Triggers: Underwater earthquakes and volcanic eruptions can generate tsunamis, as seen in the 2004 Indian Ocean Tsunami. Impact: Coastal areas are particularly vulnerable to tsunamis, which can lead to massive loss of life and property. Floods: Monsoon Influence: India's...

Water Act 1974

The Water (Prevention and Control of Pollution) Act of 1974 is a significant piece of legislation in India aimed at preventing and controlling water pollution. Here are some key facts about the Act: 1. Objective: The primary objective is to prevent and control water pollution and maintain or restore the wholesomeness of water in the country. 2. Establishment of Boards:    - Central Pollution Control Board (CPCB): The Act mandates the establishment of the CPCB to oversee and coordinate activities across the nation and advise the Central Government.    - State Pollution Control Boards (SPCBs): Each state is required to establish its own SPCB to plan comprehensive programs for the prevention and control of pollution. 3. Powers and Functions:    - The Boards have the authority to inspect any sewage or trade effluents, works, and plants for the treatment of sewage and trade effluents.    - They can establish standards for the discharge of pollutants into water bodies and ensure adherence to...

Environment Management DRR

Environmental management plays a crucial role in disaster risk reduction (DRR) by harnessing the power of natural ecosystems to prevent and mitigate the impacts of disasters. By protecting and restoring these ecosystems, we can strengthen community resilience and promote sustainable development. Interconnections Between Environmental Management and DRR: Ecosystem-Based Disaster Risk Reduction (Eco-DRR): Natural Barriers: Ecosystems like forests, wetlands, and coral reefs act as natural barriers, reducing the impact of hazards like floods, landslides, and storm surges. Resilience Building: Healthy ecosystems enhance community resilience by absorbing excess rainfall, preventing erosion, and mitigating the effects of climate change. Environmental Considerations in Disaster Planning: Sustainable Practices: Incorporating environmental considerations into disaster planning helps prevent further environmental degradation, which can exacerbate disaster impacts. Resource Conservati...

Forset management and water conservation

Forest management and water conservation are closely intertwined concepts, as forests play a crucial role in maintaining water resources. Here's an explanation of their connection: 1. Water Regulation: Forests act as natural sponges, absorbing rainwater and releasing it gradually. Trees help regulate water flow, preventing rapid runoff and reducing the risk of floods. 2. Groundwater Recharge: Trees contribute to groundwater recharge by allowing rainwater to percolate into the soil. This replenishes underground aquifers, which are important sources of freshwater. 3. Erosion Control: Forests provide vegetation cover that protects soil from erosion caused by rainfall. This, in turn, helps maintain the quality of water bodies by preventing sedimentation. 4. Streamflow Maintenance: Healthy forests ensure consistent streamflow. Trees release water through transpiration, influencing local and regional precipitation patterns and sustaining rivers and streams. 5. Biodiversity and Water Qual...