Skip to main content

Supervised Classification. Remote Sensing

Image classification.

Supervised classification

Unsupervised classification.


Stages:

Raw data

Preprocessing

Signature collection

Signature evaluation

Classification 

.

Information Class and Spectral Class

Information class: It is a class specified by an image analyst. It refers to the information to be extracted.


Spectral class: It a class which includes similar gray-level

vectors in the multispectral space. Spectral classes are groups of pixels that are uniform (or near-similar) with respect to their brightness values.

.

Supervised and Unsupervised

Supervised (Information Class)


Have a set of desired dasses in mind then create the appropriate signatures from the data.


Appropriate

• when one wants to identify relatively few dasses

. when one has selected training sites that can be verified with ground truth data

• when one can identify distinct, homogeneous regions that represent each dass.


Unsupervised (Spectral Class)

Classes to be determined by spectral distinctions that are inherent in the data → define the dasses later.

Appropriate-

when one wants to define many dasses easily, and then identify dasses.

.

Training for Classification


Computer system must be trained to recognize patterns in image data.


Process of defining the criteria by which these patterns are recognized.


Supervised Training is controlled by the analyst.


Select pixels that represent patterns instruct the computer system to identify pixels with similar characteristics.


More accurate but requires high skill.


Unsupervised Training is computer-automated.


Specify number of classes the computer uncovers statistical classes.


Less accurate and less skill required.

.

Supervised Classification

Common decision rules:


Parametric decision rules:

Minimum distance classifier / Centroid classifier.

Maximum likelihood / Bayesian classification.


Nonparametric decision rule:

Parallelepiped classifier.

Feature space classifier.

.

Minimum Distance/Centroid Classifier:

Calculates the spectral distance between the candidate pixel and the mean of each signature.

The candidate pixel is assigned to the class with the closest mean.

Calculates mean of the spectral values for the training set in each band and for each category.

Measures the distance from a pixel of unknown identify to the mean of each category.

Assigns the pixel to the category with the shortest distance.

Assigns a pixel as "unknown" if the pixel is beyond the distances defined by the analyst.

Methods of calculation Minimum Spectral Distance:

Euclidean distance: based on the Pythagorean theorem

Mahalanobis distance:

■ Variance-Covariance matrix are used (normal distribution of DN is assumed)

.

Maximum Likelihood Classifier:

• This classifier quantitatively evaluates both the variance and covariance of the trained spectral response patterns when deciding the fate of an unknown pixel.

■To do this the classifier assumes that the distribution of points for each cover-type are normally distributed.

• Under this assumption, the distribution of a category response can be completely described by the mean vector and the covariance matrix.

■ Given these values, the classifier computes the probability that unknown pixels will belong to a particular category.

Probability function is calculated from the inputs.

Assumes probabilities are equal for all dasses.

Each pixel is then judged as to the dass to which it most probably belong.

.

Parallelepiped Classifier:

Based on Maximum and Minimum values in each signature.

..

Feature Space Classifier:

Based on discrete objects (polygons) in a feature space image.

More accurate than parallelepiped.

Comments

Popular posts from this blog

Supervised Classification

Image Classification in Remote Sensing Image classification in remote sensing involves categorizing pixels in an image into thematic classes to produce a map. This process is essential for land use and land cover mapping, environmental studies, and resource management. The two primary methods for classification are Supervised and Unsupervised Classification . Here's a breakdown of these methods and the key stages of image classification. 1. Types of Classification Supervised Classification In supervised classification, the analyst manually defines classes of interest (known as information classes ), such as "water," "urban," or "vegetation," and identifies training areas —sections of the image that are representative of these classes. Using these training areas, the algorithm learns the spectral characteristics of each class and applies them to classify the entire image. When to Use Supervised Classification:   - You have prior knowledge about the c...

Hazard Mapping Spatial Planning Evacuation Planning GIS

Geographic Information Systems (GIS) play a pivotal role in disaster management by providing the tools and frameworks necessary for effective hazard mapping, spatial planning, and evacuation planning. These concepts are integral for understanding disaster risks, preparing for potential hazards, and ensuring that resources are efficiently allocated during and after a disaster. 1. Hazard Mapping: Concept: Hazard mapping involves the process of identifying, assessing, and visually representing the geographical areas that are at risk of certain natural or human-made hazards. Hazard maps display the probability, intensity, and potential impact of specific hazards (e.g., floods, earthquakes, hurricanes, landslides) within a given area. Terminologies: Hazard Zone: An area identified as being vulnerable to a particular hazard (e.g., flood zones, seismic zones). Hazard Risk: The likelihood of a disaster occurring in a specific location, influenced by factors like geography, climate, an...

Supervised Classification

In the context of Remote Sensing (RS) and Digital Image Processing (DIP) , supervised classification is the process where an analyst defines "training sites" (Areas of Interest or ROIs) representing known land cover classes (e.g., Water, Forest, Urban). The computer then uses these training samples to teach an algorithm how to classify the rest of the image pixels. The algorithms used to classify these pixels are generally divided into two broad categories: Parametric and Nonparametric decision rules. Parametric Decision Rules These algorithms assume that the pixel values in the training data follow a specific statistical distribution—almost always the Gaussian (Normal) distribution (the "Bell Curve"). Key Concept: They model the data using statistical parameters: the Mean vector ( $\mu$ ) and the Covariance matrix ( $\Sigma$ ) . Analogy: Imagine trying to fit a smooth hill over your data points. If a new point lands high up on the hill, it belongs to that cl...

Scope of Disaster Management

Disaster management refers to the systematic approach to managing and mitigating the impacts of disasters, encompassing both natural hazards (e.g., earthquakes, floods, hurricanes) and man-made disasters (e.g., industrial accidents, terrorism, nuclear accidents). Its primary objectives are to minimize potential losses, provide timely assistance to those affected, and facilitate swift and effective recovery. The scope of disaster management is multifaceted, encompassing a series of interconnected activities: preparedness, response, recovery, and mitigation. These activities must be strategically implemented before, during, and after a disaster. Key Concepts, Terminologies, and Examples 1. Awareness: Concept: Fostering public understanding of potential hazards and appropriate responses before, during, and after disasters. This involves disseminating information about risks, safety measures, and recommended actions. Terminologies: Hazard Awareness: Recognizing the types of natural...

Role of Geography in Disaster Management

Geography plays a pivotal role in disaster management by facilitating an understanding of the impact of natural disasters, guiding preparedness efforts, and supporting effective response and recovery. By analyzing geographical features, environmental conditions, and historical data, geography empowers disaster management professionals to identify risks, plan for hazards, respond to emergencies, assess damage, and monitor recovery. Geographic Information Systems (GIS) serve as crucial tools, providing critical spatial data for informed decision-making throughout the disaster management cycle. Key Concepts, Terminologies, and Examples 1. Identifying Risk: Concept: Risk identification involves analyzing geographical areas to understand their susceptibility to specific natural disasters. By studying historical events, topography, climate patterns, and environmental factors, disaster management experts can predict which regions are most vulnerable. Terminologies: Hazard Risk: The pr...