Skip to main content

India's National Water Policy


The National Water Policy (NWP) is India's central framework for managing and utilizing its water resources. It lays down principles, objectives, and strategies for optimal water development, management, and regulation across the country.

Year of Initiation and Revisions:

  • The first NWP was adopted in 1987, focusing on increasing irrigation, drinking water access, and sanitation facilities.
  • It was revised in 2002 to address emerging challenges like inter-state water disputes and environmental considerations.
  • The current policy, NWP 2012, emphasizes integrated water management, conservation, and sustainability.

Ministry of Jal Shakti:

  • In 2019, the Ministry of Water Resources, River Development and Ganga Rejuvenation was merged with the Ministry of Drinking Water and Sanitation to form the Ministry of Jal Shakti.
  • This unified ministry oversees the implementation of the NWP and other water-related programs and initiatives.

Key Highlights of the NWP 2012:

  • Equity and social justice: Prioritizes equitable water allocation for various uses, including drinking, irrigation, industry, and ecology.
  • Decentralized management: Promotes participatory decision-making through local water user groups and basin-level planning.
  • Water conservation and efficiency: Encourages rainwater harvesting, efficient irrigation practices, and wastewater reuse.
  • Environmental protection: Recognizes the ecological needs of rivers and aquatic ecosystems.
  • Pricing and tariffs: Advocates for volumetric water pricing to promote efficient usage and cost recovery.

Related Information:

  • Jal Jeevan Mission: Aims to provide piped water supply to all rural households by 2024.
  • Catch the Rain campaign: Promotes rainwater harvesting structures across the country.
  • Atal Mission for Rejuvenation and Urban Transformation (AMRUT): Focuses on water supply and sanitation infrastructure in urban areas.
  • National Water Mission: Launched under the National Action Plan on Climate Change, it aims to improve water availability and efficiency through various interventions.

Challenges and Concerns:Implementing the NWP effectively requires coordinated efforts from various stakeholders at central, state, and local levels.

  • Balancing different water demands and ensuring equitable access remains a challenge.
  • Addressing issues like climate change, pollution, and groundwater depletion requires urgent attention.




Comments

Popular posts from this blog

Platforms in Remote Sensing

In remote sensing, a platform is the physical structure or vehicle that carries a sensor (camera, scanner, radar, etc.) to observe and collect information about the Earth's surface. Platforms are classified mainly by their altitude and mobility : Ground-Based Platforms Definition : Sensors mounted on the Earth's surface or very close to it. Examples : Tripods, towers, ground vehicles, handheld instruments. Applications : Calibration and validation of satellite data Detailed local studies (e.g., soil properties, vegetation health, air quality) Strength : High spatial detail but limited coverage. Airborne Platforms Definition : Sensors carried by aircraft, balloons, or drones (UAVs). Altitude : A few hundred meters to ~20 km. Examples : Airplanes with multispectral scanners UAVs with high-resolution cameras or LiDAR High-altitude balloons (stratospheric platforms) Applications : Local-to-regional mapping ...

Optical Sensors in Remote Sensing

1. What Are Optical Sensors? Optical sensors are remote sensing instruments that detect solar radiation reflected or emitted from the Earth's surface in specific portions of the electromagnetic spectrum (EMS) . They mainly work in: Visible region (0.4–0.7 ยตm) Near-Infrared – NIR (0.7–1.3 ยตm) Shortwave Infrared – SWIR (1.3–3.0 ยตm) Thermal Infrared – TIR (8–14 ยตm) — emitted energy, not reflected Optical sensors capture spectral signatures of surface features. Each object reflects/absorbs energy differently, creating a unique spectral response pattern . a) Electromagnetic Spectrum (EMS) The continuous range of wavelengths. Optical sensing uses solar reflective bands and sometimes thermal bands . b) Spectral Signature The unique pattern of reflectance or absorbance of an object across wavelengths. Example: Vegetation reflects strongly in NIR Water absorbs strongly in NIR and SWIR (appears dark) c) Radiance and Reflectance Radi...

Types of Remote Sensing

Remote Sensing means collecting information about the Earth's surface without touching it , usually using satellites, aircraft, or drones . There are different types of remote sensing based on the energy source and the wavelength region used. ๐Ÿ›ฐ️ 1. Active Remote Sensing ๐Ÿ“˜ Concept: In active remote sensing , the sensor sends out its own energy (like a signal or pulse) to the Earth's surface. The sensor then records the reflected or backscattered energy that comes back from the surface. ⚙️ Key Terminology: Transmitter: sends energy (like a radar pulse or laser beam). Receiver: detects the energy that bounces back. Backscatter: energy that is reflected back to the sensor. ๐Ÿ“Š Examples of Active Sensors: RADAR (Radio Detection and Ranging): Uses microwave signals to detect surface roughness, soil moisture, or ocean waves. LiDAR (Light Detection and Ranging): Uses laser light (near-infrared) to measure elevation, vegetation...

Resolution of Sensors in Remote Sensing

Spatial Resolution ๐Ÿ—บ️ Definition : The smallest size of an object on the ground that a sensor can detect. Measured as : The size of a pixel on the ground (in meters). Example : Landsat → 30 m (each pixel = 30 × 30 m on Earth). WorldView-3 → 0.31 m (very detailed, you can see cars). Fact : Higher spatial resolution = finer details, but smaller coverage. Spectral Resolution ๐ŸŒˆ Definition : The ability of a sensor to capture information in different parts (bands) of the electromagnetic spectrum . Measured as : The number and width of spectral bands. Types : Panchromatic (1 broad band, e.g., black & white image). Multispectral (several broad bands, e.g., Landsat with 7–13 bands). Hyperspectral (hundreds of very narrow bands, e.g., AVIRIS). Fact : Higher spectral resolution = better identification of materials (e.g., minerals, vegetation types). Radiometric Resolution ๐Ÿ“Š Definition : The ability of a sensor to ...

Radar Sensors in Remote Sensing

Radar sensors are active remote sensing instruments that use microwave radiation to detect and measure Earth's surface features. They transmit their own energy (radio waves) toward the Earth and record the backscattered signal that returns to the sensor. Since they do not depend on sunlight, radar systems can collect data: day or night through clouds, fog, smoke, and rain in all weather conditions This makes radar extremely useful for Earth observation. 1. Active Sensor A radar sensor produces and transmits its own microwaves. This is different from optical and thermal sensors, which depend on sunlight or emitted heat. 2. Microwave Region Radar operates in the microwave region of the electromagnetic spectrum , typically from 1 mm to 1 m wavelength. Common radar frequency bands: P-band (70 cm) L-band (23 cm) S-band (9 cm) C-band (5.6 cm) X-band (3 cm) Each band penetrates and interacts with surfaces differently: Lo...