Skip to main content

spectral indices. Remote sensing

The Normalized Difference Vegetation Index (NDVI) is a numerical indicator that uses the red and near-infrared spectral bands. NDVI is highly associated with vegetation content. High NDVI values correspond to areas that reflect more in the near-infrared spectrum. Higher reflectance in the near-infrared correspond to denser and healthier vegetation.
Formula
NDVI = (NIR – Red) / (NIR + Red)
NDVI (Landsat 8) = (B5 – B4) / (B5 + B4)

Green Normalized Difference Vegetation Index (GNDVI):
Green Normalized Difference Vegetation Index (GNDVI) is modified version of NDVI to be more sensitive to the variation of chlorophyll content in the crop. " The highest correlation values with leaf N content and DM were obtained with the GNDVI index in all data acquisition periods and both experimental phases. … GNDVI was more sensible than NDVI to identify different concentration rates of chlorophyll, which is highly correlated at nitrogen, in two species of plants." (Gitelson et al. 1996)

Formula of GNDVI = (NIR-GREEN) /(NIR+GREEN)
GNDVI (Landsat 8) = (B5 – B3) / (B5 + B3)

Enhanced Vegetation Index (EVI):
EVI is similar to Normalized Difference Vegetation Index (NDVI) and can be used to quantify vegetation greenness. However, EVI corrects for some atmospheric conditions and canopy background noise and is more sensitive in areas with dense vegetation. It incorporates an "L" value to adjust for canopy background, "C" values as coefficients for atmospheric resistance, and values from the blue band (B).  These enhancements allow for index calculation as a ratio between the R and NIR values, while reducing the background noise, atmospheric noise, and saturation in most cases (USGS, 2019).

Formula of EVI = G * ((NIR – R) / (NIR + C1 * R – C2 * B + L))
EVI (Landsat 8) = 2.5 * ((B5 – B4) / (B5 + 6 * B4 – 7.5 * B2 + 1))

Advanced Vegetation Index (AVI):
Advanced Vegetation Index (AVI) is a numerical indicator, similar to NDVI, that uses the red and near-infrared spectral bands. Like NDVI, AVI is used in vegetation studies to monitor crop and forest variations over time. Through the multi-temporal combination of the AVI and the NDVI, users can discriminate different types of vegetation and extract phenology characteristics/parameters (GU, 2019).

Formula of AVI = [NIR * (1-Red) * (NIR-Red)] 1/3
AVI (Landsat 8) = [B5 * (1 – B4)*(B5 – B4)]1/3

Soil Adjusted Vegetation Index (SAVI):
SAVI is used to correct Normalized Difference Vegetation Index (NDVI) for the influence of soil brightness in areas where vegetative cover is low. Landsat Surface Reflectance-derived SAVI is calculated as a ratio between the R and NIR values with a soil brightness correction factor (L) defined as 0.5 to accommodate most land cover types (USGS, 2019).

Formula of SAVI = ((NIR – R) / (NIR + R + L)) * (1 + L)
SAVI (Landsat 8) = ((B5 – B4) / (B5+ B4 + 0.5)) * (1.5)

Normalized Difference Moisture Index (NDMI):
NDMI is used to determine vegetation water content. It is calculated as a ratio between the NIR and SWIR values in traditional fashion (USGS, 2019).

Formula of NDMI = (NIR – SWIR) / (NIR + SWIR)
NDMI (Landsat 8) = (B5 – B6) / (B5 + B6)

Moisture Stress Index (MSI):
Moisture Stress Index is used for canopy stress analysis, productivity prediction and biophysical modeling. Interpretation of the MSI is inverted relative to other water vegetation indices; thus, higher values of the index indicate greater plant water stress and in inference, less soil moisture content. The values of this index range from 0 to more than 3 with the common range for green vegetation being 0.2 to 2 (Welikhe et al., 2017).
Formula of MSI = MidIR / NIR
MSI (Landsat 8) = B6 / B5

Green Coverage Index (GCI):
In remote sensing, the Green Chlorophyll Index is used to estimate the content of leaf chlorophyll in various species of plants. The chlorophyll content reflects the physiological state of vegetation; it decreases in stressed plants and can therefore be used as a measurement of plant health (EOS, 2019).
Formula of GCI = (NIR) / (Green) – 1
GCI (Landsat 8) = (B5 / B3) -1
..
Normalized Burned Ratio Index (NBRI):
Forest fires are a severe manmade or natural phenomena that destroy natural recourses, live stock, unbalances the local environments, release huge amount of Green House Gases etc. NBRI takes advantage of the near infrared and short wave infrared spectral bands, which are sensitive in vegetation changes, to detect burned areas and monitor the recovery of the ecosystem (GU, 2019).
Formula of NBR = (NIR – SWIR) / (NIR+ SWIR)
NBRI (Landsat 8) = (B5 – B7) / (B5 + B7)
..
Bare Soil Index (BSI):
Bare Soil Index (BSI) is a numerical indicator that combines blue, red, near infrared and short wave infrared spectral bands to capture soil variations. These spectral bands are used in a normalized manner. The short wave infrared and the red spectral bands are used to quantify the soil mineral composition, while the blue and the near infrared spectral bands are used to enhance the presence of vegetation (GU, 2019).

Formula of BSI = ((Red+SWIR) – (NIR+Blue)) / ((Red+SWIR) + (NIR+Blue))
BSI (Landsta 8) = (B6 + B4) – (B5 + B2) / (B6 + B4) + (B5 + B2)
BSI (Landsta 4 – 7) = (B5 + B3) – (B4 + B1) / (B5 + B3) + (B4 + B1)
BSI (Sentinel 2) = (B11 + B4) – (B8 + B2) / (B11 + B4) + (B8 + B2)
..
Normalized Difference Water Index (NDWI):
Normalize Difference Water Index (NDWI) is use for the water bodies analysis. The index uses Green and Near infra-red bands of remote sensing images. The NDWI can enhance water information efficiently in most cases. It is sensitive to build-up land and result in over-estimated water bodies. The NDWI products can be used in conjunction with NDVI change products to assess context of apparent change areas (Bahadur, 2018).
Formula of NDWI = (NIR – SWIR) / (NIR + SWIR)
NDWI (Landsat 8) = (B3 – B5) / (B3 + B5)
NDWI (Landsat 4 – 7) = (B2 – B4) / (B2 + B4)
NDWI (Sentinel 2) = (B3 – B8) / (B3 + B8)
..
Normalized Difference Snow Index (NDSI):
The Normalized Difference Snow Index (NDSI) is a numerical indicator that shows snow cover over land areas. The green and short wave infrared (SWIR) spectral bands are used within this formula to map the snow cover. Since snow absorbs most of the incident radiation in the SWIR while clouds do not, this enables NDSI to distinguish snow from clouds. This formula is commonly used in snow/ice cover mapping application as well as glacier monitoring (Bluemarblegeo, 2019).
Formula of NDSI = (Green-SWIR) / (Green+SWIR)
NDSI (Landsat 8) = (B3 – B6) / (B3 + B6)
NDSI (Landsat 4 – 7) = (B2 – B5) / (B2 + B5)
NDSI (Sentinel 2) = (B3 – B11) / (B3 + B11)
...
Normalized Difference Glacier Index (NDGI):
Normalized Difference Glacier Index (NDGI) is used to help detect and monitor glaciers by using the green and red spectral bands. This equation is commonly used in glacier detection and glacier monitoring applications (Bluemarblegeo, 2019).
Formula of NDGI = (NIR-Green)/(NIR+Green)
NDGI (Landsat 8) = (B3 – B4) / (B3 + B4)
NDGI (Landsat 4 – 7) = (B2 – B3) / (B2 + B3)
NDGI (Sentinel 2) = (B3 – B4) / (B3 + B4)

Atmospherically Resistant Vegetation Index (ARVI)
As the name suggests, the Atmospherically Resistant Vegetation Index is the first vegetation index, which is relatively prone to atmospheric factors (such as aerosol). The formula of ARVI index invented by Kaufman and Tanré is basically NDVI corrected for atmospheric scattering effects in the red reflectance spectrum by using the measurements in blue wavelengths.
Formula of ARVI = (NIR – (2 * Red) + Blue) / (NIR + (2 * Red) + Blue)
..
Structure Insensitive Pigment Index (SIPI)
The Structure Insensitive Pigment Index is good for analysis of vegetation with the variable canopy structure. It estimates the ratio of carotenoids to chlorophyll: the increased value signals of stressed vegetation
Formula of SIPI = (NIR – Blue) / (NIR – Red)




Comments

Popular posts from this blog

Evaluation and Characteristics of Himalayas

Time Period Event / Process Geological Evidence Key Terms & Concepts Late Precambrian – Palaeozoic (>541 Ma – ~250 Ma) India part of Gondwana , north bordered by Cimmerian Superterranes, separated from Eurasia by Paleo-Tethys Ocean . Pan-African granitic intrusions (~500 Ma), unconformity between Ordovician conglomerates & Cambrian sediments. Gondwana, Paleo-Tethys Ocean, Pan-African orogeny, unconformity, granitic intrusions, Cimmerian Superterranes. Early Carboniferous – Early Permian (~359 – 272 Ma) Rifting between India & Cimmerian Superterranes → Neotethys Ocean formation. Rift-related sediments, passive margin sequences. Rifting, Neotethys Ocean, passive continental margin. Norian (210 Ma) – Callovian (160–155 Ma) Gondwana split into East & West; India part of East Gondwana with Australia & Antarctica. Rift basins, oceanic crust formation. Continental breakup, East Gondwana, West Gondwana, oceanic crust. Early Cretaceous (130–125 Ma) India broke fr...

Seismicity and Earthquakes, Isostasy and Gravity

1. Seismicity and Earthquakes in the Indian Subcontinent Key Concept: Seismicity Definition : The occurrence, frequency, and magnitude of earthquakes in a region. In India, seismicity is high due to active tectonic processes . Plate Tectonics 🌏 Indian Plate : Moves northward at about 5 cm/year. Collision with Eurasian Plate : Causes intense crustal deformation , mountain building (Himalayas), and earthquakes. This is an example of a continental-continental collision zone . Seismic Zones of India Classified into Zone II, III, IV, V (Bureau of Indian Standards, BIS). Zone V = highest hazard (e.g., Himalayas, Northeast India). Zone II = lowest hazard (e.g., parts of peninsular India). Earthquake Hazards ⚠️ Himalayas: prone to large shallow-focus earthquakes due to active thrust faulting. Northeast India: complex subduction and strike-slip faults . Examples: 1897 Shillong Earthquake (Magnitude ~8.1) 1950 Assam–Tib...

geostationary and sun-synchronous

Orbital characteristics of Remote sensing satellite geostationary and sun-synchronous  Orbits in Remote Sensing Orbit = the path a satellite follows around the Earth. The orbit determines what part of Earth the satellite can see , how often it revisits , and what applications it is good for . Remote sensing satellites mainly use two standard orbits : Geostationary Orbit (GEO) Sun-Synchronous Orbit (SSO)  Geostationary Satellites (GEO) Characteristics Altitude : ~35,786 km above the equator. Period : 24 hours → same as Earth's rotation. Orbit type : Circular, directly above the equator . Appears "stationary" over one fixed point on Earth. Concepts & Terminologies Geosynchronous = orbit period matches Earth's rotation (24h). Geostationary = special type of geosynchronous orbit directly above equator → looks fixed. Continuous coverage : Can monitor the same area all the time. Applications Weather...

Network data model

GIS, a network data model is used to represent and study things that are connected like a web — for example, roads, rivers, railway tracks, water pipes, or electric lines . It focuses on how things are connected and helps us solve problems like finding the best route, the nearest hospital, or where water will flow. Nodes → Points where things meet or end (e.g., road intersections, railway stations, pumping stations). Edges → Lines connecting the nodes (e.g., roads, pipelines, cables). Topology → The "rules" of connection — which node is linked to which edge. Attributes → Extra details about each part (e.g., road speed limit, pipe size, traffic volume). How It Works 🔍 Make the Network Model Start with a map of lines (roads, pipes, rivers) and mark how they connect. Run Analyses Routing → Find the shortest or fastest path. Closest Facility → Find the nearest hospital, petrol station, etc. Service Area → Find how far y...

Pre During and Post Disaster

Disaster management is a structured approach aimed at reducing risks, responding effectively, and ensuring a swift recovery from disasters. It consists of three main phases: Pre-Disaster (Mitigation & Preparedness), During Disaster (Response), and Post-Disaster (Recovery). These phases involve various strategies, policies, and actions to protect lives, property, and the environment. Below is a breakdown of each phase with key concepts, terminologies, and examples. 1. Pre-Disaster Phase (Mitigation and Preparedness) Mitigation: This phase focuses on reducing the severity of a disaster by minimizing risks and vulnerabilities. It involves structural and non-structural measures. Hazard Identification: Recognizing potential natural and human-made hazards (e.g., earthquakes, floods, industrial accidents). Risk Assessment: Evaluating the probability and consequences of disasters using GIS, remote sensing, and historical data. Vulnerability Analysis: Identifying areas and p...