Skip to main content

spectral indices. Remote sensing

The Normalized Difference Vegetation Index (NDVI) is a numerical indicator that uses the red and near-infrared spectral bands. NDVI is highly associated with vegetation content. High NDVI values correspond to areas that reflect more in the near-infrared spectrum. Higher reflectance in the near-infrared correspond to denser and healthier vegetation.
Formula
NDVI = (NIR – Red) / (NIR + Red)
NDVI (Landsat 8) = (B5 – B4) / (B5 + B4)

Green Normalized Difference Vegetation Index (GNDVI):
Green Normalized Difference Vegetation Index (GNDVI) is modified version of NDVI to be more sensitive to the variation of chlorophyll content in the crop. " The highest correlation values with leaf N content and DM were obtained with the GNDVI index in all data acquisition periods and both experimental phases. … GNDVI was more sensible than NDVI to identify different concentration rates of chlorophyll, which is highly correlated at nitrogen, in two species of plants." (Gitelson et al. 1996)

Formula of GNDVI = (NIR-GREEN) /(NIR+GREEN)
GNDVI (Landsat 8) = (B5 – B3) / (B5 + B3)

Enhanced Vegetation Index (EVI):
EVI is similar to Normalized Difference Vegetation Index (NDVI) and can be used to quantify vegetation greenness. However, EVI corrects for some atmospheric conditions and canopy background noise and is more sensitive in areas with dense vegetation. It incorporates an "L" value to adjust for canopy background, "C" values as coefficients for atmospheric resistance, and values from the blue band (B).  These enhancements allow for index calculation as a ratio between the R and NIR values, while reducing the background noise, atmospheric noise, and saturation in most cases (USGS, 2019).

Formula of EVI = G * ((NIR – R) / (NIR + C1 * R – C2 * B + L))
EVI (Landsat 8) = 2.5 * ((B5 – B4) / (B5 + 6 * B4 – 7.5 * B2 + 1))

Advanced Vegetation Index (AVI):
Advanced Vegetation Index (AVI) is a numerical indicator, similar to NDVI, that uses the red and near-infrared spectral bands. Like NDVI, AVI is used in vegetation studies to monitor crop and forest variations over time. Through the multi-temporal combination of the AVI and the NDVI, users can discriminate different types of vegetation and extract phenology characteristics/parameters (GU, 2019).

Formula of AVI = [NIR * (1-Red) * (NIR-Red)] 1/3
AVI (Landsat 8) = [B5 * (1 – B4)*(B5 – B4)]1/3

Soil Adjusted Vegetation Index (SAVI):
SAVI is used to correct Normalized Difference Vegetation Index (NDVI) for the influence of soil brightness in areas where vegetative cover is low. Landsat Surface Reflectance-derived SAVI is calculated as a ratio between the R and NIR values with a soil brightness correction factor (L) defined as 0.5 to accommodate most land cover types (USGS, 2019).

Formula of SAVI = ((NIR – R) / (NIR + R + L)) * (1 + L)
SAVI (Landsat 8) = ((B5 – B4) / (B5+ B4 + 0.5)) * (1.5)

Normalized Difference Moisture Index (NDMI):
NDMI is used to determine vegetation water content. It is calculated as a ratio between the NIR and SWIR values in traditional fashion (USGS, 2019).

Formula of NDMI = (NIR – SWIR) / (NIR + SWIR)
NDMI (Landsat 8) = (B5 – B6) / (B5 + B6)

Moisture Stress Index (MSI):
Moisture Stress Index is used for canopy stress analysis, productivity prediction and biophysical modeling. Interpretation of the MSI is inverted relative to other water vegetation indices; thus, higher values of the index indicate greater plant water stress and in inference, less soil moisture content. The values of this index range from 0 to more than 3 with the common range for green vegetation being 0.2 to 2 (Welikhe et al., 2017).
Formula of MSI = MidIR / NIR
MSI (Landsat 8) = B6 / B5

Green Coverage Index (GCI):
In remote sensing, the Green Chlorophyll Index is used to estimate the content of leaf chlorophyll in various species of plants. The chlorophyll content reflects the physiological state of vegetation; it decreases in stressed plants and can therefore be used as a measurement of plant health (EOS, 2019).
Formula of GCI = (NIR) / (Green) – 1
GCI (Landsat 8) = (B5 / B3) -1
..
Normalized Burned Ratio Index (NBRI):
Forest fires are a severe manmade or natural phenomena that destroy natural recourses, live stock, unbalances the local environments, release huge amount of Green House Gases etc. NBRI takes advantage of the near infrared and short wave infrared spectral bands, which are sensitive in vegetation changes, to detect burned areas and monitor the recovery of the ecosystem (GU, 2019).
Formula of NBR = (NIR – SWIR) / (NIR+ SWIR)
NBRI (Landsat 8) = (B5 – B7) / (B5 + B7)
..
Bare Soil Index (BSI):
Bare Soil Index (BSI) is a numerical indicator that combines blue, red, near infrared and short wave infrared spectral bands to capture soil variations. These spectral bands are used in a normalized manner. The short wave infrared and the red spectral bands are used to quantify the soil mineral composition, while the blue and the near infrared spectral bands are used to enhance the presence of vegetation (GU, 2019).

Formula of BSI = ((Red+SWIR) – (NIR+Blue)) / ((Red+SWIR) + (NIR+Blue))
BSI (Landsta 8) = (B6 + B4) – (B5 + B2) / (B6 + B4) + (B5 + B2)
BSI (Landsta 4 – 7) = (B5 + B3) – (B4 + B1) / (B5 + B3) + (B4 + B1)
BSI (Sentinel 2) = (B11 + B4) – (B8 + B2) / (B11 + B4) + (B8 + B2)
..
Normalized Difference Water Index (NDWI):
Normalize Difference Water Index (NDWI) is use for the water bodies analysis. The index uses Green and Near infra-red bands of remote sensing images. The NDWI can enhance water information efficiently in most cases. It is sensitive to build-up land and result in over-estimated water bodies. The NDWI products can be used in conjunction with NDVI change products to assess context of apparent change areas (Bahadur, 2018).
Formula of NDWI = (NIR – SWIR) / (NIR + SWIR)
NDWI (Landsat 8) = (B3 – B5) / (B3 + B5)
NDWI (Landsat 4 – 7) = (B2 – B4) / (B2 + B4)
NDWI (Sentinel 2) = (B3 – B8) / (B3 + B8)
..
Normalized Difference Snow Index (NDSI):
The Normalized Difference Snow Index (NDSI) is a numerical indicator that shows snow cover over land areas. The green and short wave infrared (SWIR) spectral bands are used within this formula to map the snow cover. Since snow absorbs most of the incident radiation in the SWIR while clouds do not, this enables NDSI to distinguish snow from clouds. This formula is commonly used in snow/ice cover mapping application as well as glacier monitoring (Bluemarblegeo, 2019).
Formula of NDSI = (Green-SWIR) / (Green+SWIR)
NDSI (Landsat 8) = (B3 – B6) / (B3 + B6)
NDSI (Landsat 4 – 7) = (B2 – B5) / (B2 + B5)
NDSI (Sentinel 2) = (B3 – B11) / (B3 + B11)
...
Normalized Difference Glacier Index (NDGI):
Normalized Difference Glacier Index (NDGI) is used to help detect and monitor glaciers by using the green and red spectral bands. This equation is commonly used in glacier detection and glacier monitoring applications (Bluemarblegeo, 2019).
Formula of NDGI = (NIR-Green)/(NIR+Green)
NDGI (Landsat 8) = (B3 – B4) / (B3 + B4)
NDGI (Landsat 4 – 7) = (B2 – B3) / (B2 + B3)
NDGI (Sentinel 2) = (B3 – B4) / (B3 + B4)

Atmospherically Resistant Vegetation Index (ARVI)
As the name suggests, the Atmospherically Resistant Vegetation Index is the first vegetation index, which is relatively prone to atmospheric factors (such as aerosol). The formula of ARVI index invented by Kaufman and Tanré is basically NDVI corrected for atmospheric scattering effects in the red reflectance spectrum by using the measurements in blue wavelengths.
Formula of ARVI = (NIR – (2 * Red) + Blue) / (NIR + (2 * Red) + Blue)
..
Structure Insensitive Pigment Index (SIPI)
The Structure Insensitive Pigment Index is good for analysis of vegetation with the variable canopy structure. It estimates the ratio of carotenoids to chlorophyll: the increased value signals of stressed vegetation
Formula of SIPI = (NIR – Blue) / (NIR – Red)




Comments

Popular posts from this blog

History of GIS

1. 1832 - Early Spatial Analysis in Epidemiology:    - Charles Picquet creates a map in Paris detailing cholera deaths per 1,000 inhabitants.    - Utilizes halftone color gradients for visual representation. 2. 1854 - John Snow's Cholera Outbreak Analysis:    - Epidemiologist John Snow identifies cholera outbreak source in London using spatial analysis.    - Maps casualties' residences and nearby water sources to pinpoint the outbreak's origin. 3. Early 20th Century - Photozincography and Layered Mapping:    - Photozincography development allows maps to be split into layers for vegetation, water, etc.    - Introduction of layers, later a key feature in GIS, for separate printing plates. 4. Mid-20th Century - Computer Facilitation of Cartography:    - Waldo Tobler's 1959 publication details using computers for cartography.    - Computer hardware development, driven by nuclear weapon research, leads to broader mapping applications by early 1960s. 5. 1960 - Canada Geograph...

Supervised Classification

Image Classification in Remote Sensing Image classification in remote sensing involves categorizing pixels in an image into thematic classes to produce a map. This process is essential for land use and land cover mapping, environmental studies, and resource management. The two primary methods for classification are Supervised and Unsupervised Classification . Here's a breakdown of these methods and the key stages of image classification. 1. Types of Classification Supervised Classification In supervised classification, the analyst manually defines classes of interest (known as information classes ), such as "water," "urban," or "vegetation," and identifies training areas —sections of the image that are representative of these classes. Using these training areas, the algorithm learns the spectral characteristics of each class and applies them to classify the entire image. When to Use Supervised Classification:   - You have prior knowledge about the c...

GIS: Real World and Representations - Modeling and Maps

Geographic Information Systems (GIS) serve as a bridge between the real world and digital representations of geographic phenomena. These representations allow users to store, analyze, and visualize spatial data for informed decision-making. Two key aspects of GIS in this context are modeling and maps , both of which are used to represent real-world geographic features and phenomena in a structured, analyzable format. Let's delve into these concepts, terminologies, and examples in detail. 1. Real World and Representations in GIS Concept: The real world comprises physical, tangible phenomena, such as landforms, rivers, cities, and infrastructure, as well as more abstract elements like weather patterns, population densities, and traffic flow. GIS allows us to represent these real-world phenomena digitally, enabling spatial analysis, decision-making, and visualization. The representation of the real world in GIS is achieved through various models and maps , which simplify...

Representation of Spatial and Temporal Relationships

In GIS, spatial and temporal relationships allow the integration of location (the "where") and time (the "when") to analyze phenomena across space and time. This combination is fundamental to studying dynamic processes such as urban growth, land-use changes, or natural disasters. Key Concepts and Terminologies Geographic Coordinates : Define the position of features on Earth using latitude, longitude, or other coordinate systems. Example: A building's location can be represented as (11.6994° N, 76.0773° E). Timestamp : Represents the temporal aspect of data, such as the date or time a phenomenon was observed. Example: A landslide occurrence recorded on 30/07/2024 . Spatial and Temporal Relationships : Describes how features relate in space and time. These relationships can be: Spatial : Topological (e.g., "intersects"), directional (e.g., "north of"), or proximity-based (e.g., "near"). Temporal : Sequential (e....

Accuracy Assessment

Accuracy assessment is the process of checking how correct your classified satellite image is . 👉 After supervised classification, the satellite image is divided into classes like: Water Forest Agriculture Built-up land Barren land But classification is done using computer algorithms, so some areas may be wrongly classified . 👉 Accuracy assessment helps to answer this question: ✔ "How much of my classified map is correct compared to real ground conditions?"  Goal The main goal is to: Measure reliability of classified maps Identify classification errors Improve classification results Provide scientific validity to research 👉 Without accuracy assessment, a classified map is not considered scientifically reliable . Reference Data (Ground Truth Data) Reference data is real-world information used to check classification accuracy. It can be collected from: ✔ Field survey using GPS ✔ High-resolution satellite images (Google Earth etc.) ✔ Existing maps or survey reports 🧭 Exampl...