Skip to main content

Watershed. Catchment. Basin

A watershed, also known as a river basin or drainage basin, is a fundamental concept in geohydrology and hydrology. It refers to a specific geographic area or region of land where all the surface water, including rainfall, snowmelt, and runoff, drains into a common outlet, such as a river, lake, or ocean. Here's an explanation of each term:

1. Watershed: A watershed is essentially a natural hydrological unit defined by the topography of the land. It represents the entire area from which all precipitation and surface water flow eventually gathers at a single point. This point is typically where the main river or stream within the watershed exits into a larger body of water, such as an ocean. Watersheds come in various sizes, from small ones that encompass a few square miles to enormous ones that cover entire continents.

2. River/Drainage Basin: A river basin or drainage basin is another way to describe a watershed. It's the land area that collects and channels water into a river and its tributaries. A river basin is made up of the river itself and all the contributing streams, creeks, and smaller waterways within that watershed. These smaller watercourses merge into the main river, which eventually flows into an ocean, sea, or a larger river. River basins can be quite extensive and are the fundamental building blocks of the planet's hydrological cycle.

3. Catchment Area: The catchment area is a term often used interchangeably with watershed, particularly in the context of smaller, localized areas. It represents the land that catches and collects rainfall, allowing it to flow into nearby rivers or streams. This area defines the boundaries within which precipitation contributes to the water supply of a particular river or water body. A catchment area is essentially a subset of a larger river basin, encompassing the specific area where a particular river's water sources originate.

In summary, these terms are all related to the movement of water on the Earth's surface. A watershed, river basin, and catchment area define the geographical boundaries where surface water collects and eventually drains into a common outlet, forming the basis of the Earth's complex water systems and hydrological processes.

Comments

Popular posts from this blog

geostationary and sun-synchronous

Orbital characteristics of Remote sensing satellite geostationary and sun-synchronous  Orbits in Remote Sensing Orbit = the path a satellite follows around the Earth. The orbit determines what part of Earth the satellite can see , how often it revisits , and what applications it is good for . Remote sensing satellites mainly use two standard orbits : Geostationary Orbit (GEO) Sun-Synchronous Orbit (SSO)  Geostationary Satellites (GEO) Characteristics Altitude : ~35,786 km above the equator. Period : 24 hours → same as Earth's rotation. Orbit type : Circular, directly above the equator . Appears "stationary" over one fixed point on Earth. Concepts & Terminologies Geosynchronous = orbit period matches Earth's rotation (24h). Geostationary = special type of geosynchronous orbit directly above equator → looks fixed. Continuous coverage : Can monitor the same area all the time. Applications Weather...

Platforms in Remote Sensing

In remote sensing, a platform is the physical structure or vehicle that carries a sensor (camera, scanner, radar, etc.) to observe and collect information about the Earth's surface. Platforms are classified mainly by their altitude and mobility : Ground-Based Platforms Definition : Sensors mounted on the Earth's surface or very close to it. Examples : Tripods, towers, ground vehicles, handheld instruments. Applications : Calibration and validation of satellite data Detailed local studies (e.g., soil properties, vegetation health, air quality) Strength : High spatial detail but limited coverage. Airborne Platforms Definition : Sensors carried by aircraft, balloons, or drones (UAVs). Altitude : A few hundred meters to ~20 km. Examples : Airplanes with multispectral scanners UAVs with high-resolution cameras or LiDAR High-altitude balloons (stratospheric platforms) Applications : Local-to-regional mapping ...

Man-Made Disasters

  A man-made disaster (also called a technological disaster or anthropogenic disaster ) is a catastrophic event caused directly or indirectly by human actions , rather than natural processes. These disasters arise due to negligence, error, industrial activity, conflict, or misuse of technology , and often result in loss of life, property damage, and environmental degradation . Terminology: Anthropogenic = originating from human activity. Technological hazard = hazard caused by failure or misuse of technology or industry. 🔹 Conceptual Understanding Man-made disasters are part of the Disaster Management Cycle , which includes: Prevention – avoiding unsafe practices. Mitigation – reducing disaster impact (e.g., safety regulations). Preparedness – training and planning. Response – emergency actions after the disaster. Recovery – long-term rebuilding and policy correction. These disasters are predictable and preventable through strong...

Resolution of Sensors in Remote Sensing

Spatial Resolution 🗺️ Definition : The smallest size of an object on the ground that a sensor can detect. Measured as : The size of a pixel on the ground (in meters). Example : Landsat → 30 m (each pixel = 30 × 30 m on Earth). WorldView-3 → 0.31 m (very detailed, you can see cars). Fact : Higher spatial resolution = finer details, but smaller coverage. Spectral Resolution 🌈 Definition : The ability of a sensor to capture information in different parts (bands) of the electromagnetic spectrum . Measured as : The number and width of spectral bands. Types : Panchromatic (1 broad band, e.g., black & white image). Multispectral (several broad bands, e.g., Landsat with 7–13 bands). Hyperspectral (hundreds of very narrow bands, e.g., AVIRIS). Fact : Higher spectral resolution = better identification of materials (e.g., minerals, vegetation types). Radiometric Resolution 📊 Definition : The ability of a sensor to ...

Contrast Enhancement

Image enhancement is the process of improving the visual quality and interpretability of an image. The goal is not to change the physical meaning of the image data , but to make important features easier to identify for visual interpretation or automatic analysis (e.g., classification, feature extraction). In simple terms, image enhancement helps make an image clearer, sharper, and more informative for human eyes or computer algorithms. Purpose of Image Enhancement To improve visual appearance of images. To highlight specific features such as roads, rivers, vegetation, or built-up areas. To enhance contrast or brightness for better differentiation. To reduce noise or remove distortions. To prepare images for further processing like classification or edge detection. Common Image Enhancement Operations Image Reduction: Decreases the size or resolution of an image. Useful for faster processing or overview visualization. Image Mag...