Skip to main content

Radiometric correction

Radiometric correction in remote sensing is a crucial process that aims to remove or reduce variations in the recorded radiance values of an image, ensuring that the data accurately represents the reflectance properties of the Earth's surface. This correction is essential for extracting meaningful information from remotely sensed imagery.


1. Source of Radiometric Error:

   Radiometric errors in remote sensing can originate from various sources, including:


   a. Atmospheric Effects: The Earth's atmosphere can scatter and absorb incoming sunlight and reflected light from the surface. These atmospheric effects can introduce errors in radiance values, particularly in the blue and ultraviolet spectral regions.


   b. Sensor Characteristics: Different sensors have varying spectral and radiometric characteristics, leading to inconsistencies in radiance measurements.


   c. Satellite Orbits: Variations in the satellite's position, speed, and angle relative to the Earth's surface can affect the radiance recorded by the sensor.


   d. Ground Reflectance Variations: Changes in ground cover, terrain, and surface properties can result in varying reflectance values across an image.


   e. Calibration Issues: Sensor calibration drift over time or inaccuracies in the calibration process can introduce radiometric errors.


2. Types of Radiometric Correction:

   There are several methods for radiometric correction in remote sensing, depending on the specific sources of error and the data characteristics. Here are some common types:


   a. Dark Object Subtraction (DOS): This method involves identifying the darkest objects in the image, which are assumed to be black, non-reflective surfaces. The radiance values of all pixels are adjusted based on the radiance of these dark objects to correct for sensor-specific errors.


   b. Atmospheric Correction: Atmospheric correction algorithms attempt to estimate and remove the influence of the atmosphere on radiance values. They use atmospheric models and sensor data to adjust the recorded values to approximate surface reflectance.


   c. Calibration Correction: This correction addresses sensor-specific errors by using calibration data to rescale and adjust the recorded radiance values.


   d. Relative Radiometric Correction: In this approach, image-to-image variations are corrected by comparing and normalizing radiance values across different scenes or time periods.


   e. Absolute Radiometric Correction: This method aims to provide accurate radiometric values by considering sensor-specific parameters and calibration data, making the data directly comparable across different sensors and time periods.


   f. Top-of-Atmosphere (TOA) Reflectance: TOA reflectance correction calculates the reflectance values at the top of the atmosphere by removing atmospheric effects. This correction is valuable for comparing images acquired under varying atmospheric conditions.


Effective radiometric correction enhances the utility of remote sensing data for applications such as land cover classification, change detection, and environmental monitoring, by ensuring that the imagery accurately reflects the Earth's surface properties while minimizing errors caused by various sources.

Comments

Popular posts from this blog

History of GIS

1. 1832 - Early Spatial Analysis in Epidemiology:    - Charles Picquet creates a map in Paris detailing cholera deaths per 1,000 inhabitants.    - Utilizes halftone color gradients for visual representation. 2. 1854 - John Snow's Cholera Outbreak Analysis:    - Epidemiologist John Snow identifies cholera outbreak source in London using spatial analysis.    - Maps casualties' residences and nearby water sources to pinpoint the outbreak's origin. 3. Early 20th Century - Photozincography and Layered Mapping:    - Photozincography development allows maps to be split into layers for vegetation, water, etc.    - Introduction of layers, later a key feature in GIS, for separate printing plates. 4. Mid-20th Century - Computer Facilitation of Cartography:    - Waldo Tobler's 1959 publication details using computers for cartography.    - Computer hardware development, driven by nuclear weapon research, leads to broader mapping applications by early 1960s. 5. 1960 - Canada Geograph...

History of GIS

The history of Geographic Information Systems (GIS) is rooted in early efforts to understand spatial relationships and patterns, long before the advent of digital computers. While modern GIS emerged in the mid-20th century with advances in computing, its conceptual foundations lie in cartography, spatial analysis, and thematic mapping. Early Roots of Spatial Analysis (Pre-1960s) One of the earliest documented applications of spatial analysis dates back to  1832 , when  Charles Picquet , a French geographer and cartographer, produced a cholera mortality map of Paris. In his report  Rapport sur la marche et les effets du cholĂ©ra dans Paris et le dĂ©partement de la Seine , Picquet used graduated color shading to represent cholera deaths per 1,000 inhabitants across 48 districts. This work is widely regarded as an early example of choropleth mapping and thematic cartography applied to epidemiology. A landmark moment in the history of spatial analysis occurred in  1854 , when  John Snow  inv...

Supervised Classification

Image Classification in Remote Sensing Image classification in remote sensing involves categorizing pixels in an image into thematic classes to produce a map. This process is essential for land use and land cover mapping, environmental studies, and resource management. The two primary methods for classification are Supervised and Unsupervised Classification . Here's a breakdown of these methods and the key stages of image classification. 1. Types of Classification Supervised Classification In supervised classification, the analyst manually defines classes of interest (known as information classes ), such as "water," "urban," or "vegetation," and identifies training areas —sections of the image that are representative of these classes. Using these training areas, the algorithm learns the spectral characteristics of each class and applies them to classify the entire image. When to Use Supervised Classification:   - You have prior knowledge about the c...

GIS: Real World and Representations - Modeling and Maps

Geographic Information Systems (GIS) serve as a bridge between the real world and digital representations of geographic phenomena. These representations allow users to store, analyze, and visualize spatial data for informed decision-making. Two key aspects of GIS in this context are modeling and maps , both of which are used to represent real-world geographic features and phenomena in a structured, analyzable format. Let's delve into these concepts, terminologies, and examples in detail. 1. Real World and Representations in GIS Concept: The real world comprises physical, tangible phenomena, such as landforms, rivers, cities, and infrastructure, as well as more abstract elements like weather patterns, population densities, and traffic flow. GIS allows us to represent these real-world phenomena digitally, enabling spatial analysis, decision-making, and visualization. The representation of the real world in GIS is achieved through various models and maps , which simplify...

Representation of Spatial and Temporal Relationships

In GIS, spatial and temporal relationships allow the integration of location (the "where") and time (the "when") to analyze phenomena across space and time. This combination is fundamental to studying dynamic processes such as urban growth, land-use changes, or natural disasters. Key Concepts and Terminologies Geographic Coordinates : Define the position of features on Earth using latitude, longitude, or other coordinate systems. Example: A building's location can be represented as (11.6994° N, 76.0773° E). Timestamp : Represents the temporal aspect of data, such as the date or time a phenomenon was observed. Example: A landslide occurrence recorded on 30/07/2024 . Spatial and Temporal Relationships : Describes how features relate in space and time. These relationships can be: Spatial : Topological (e.g., "intersects"), directional (e.g., "north of"), or proximity-based (e.g., "near"). Temporal : Sequential (e....