Skip to main content

Tectonics and Faulting zones in Himalaya

The Himalayan mountain range is a complex geological structure with several tectonic subdivisions, each characterized by distinct rock types, geological processes, and landforms. Here's an explanation of the tectonic subdivisions of the Himalayas:


1. Outer Himalaya:

   - Also known as the Siwalik Range, the Outer Himalaya is the southernmost subdivision of the Himalayas.

   - It consists of sedimentary rocks, including sandstones, siltstones, and conglomerates, which were deposited by ancient rivers and seas.

   - The Outer Himalaya is characterized by foothills, alluvial plains, and the Siwalik Hills, which serve as an important source of sediment for the Indo-Gangetic plain.


2. Lesser Himalaya:

   - Located north of the Outer Himalaya, the Lesser Himalaya is composed of a mix of sedimentary and metamorphic rocks.

   - It includes shale, limestone, and phyllites along with low-grade metamorphic rocks.

   - This region contains several hill stations and valleys and is a transition zone between the lowlands and the higher Himalayan ranges.


3. Central Crystallines:

   - The Central Crystallines, also known as the High Himalaya or Greater Himalaya, form the core of the Himalayan mountain range.

   - This subdivision consists of highly metamorphosed rocks, including gneisses, schists, and granites.

   - It is home to the highest peaks in the Himalayas, including Mount Everest and K2.

   - The Central Crystallines have experienced intense folding, faulting, and uplift due to the collision between the Indian and Eurasian tectonic plates.


4. Higher Himalaya:

   - The Higher Himalaya is an upper part of the Central Crystallines and is characterized by the presence of high-grade metamorphic rocks like gneisses and granites.

   - It includes the region where the highest peaks, often covered in glaciers, are located.

   - This subdivision is marked by rugged terrain, deep valleys, and extensive snow and ice cover.


5. Tibetan Tethys Himalaya:

   - The Tibetan Tethys Himalaya is a northern subdivision of the Himalayas, extending into Tibet and the Tibetan Plateau.

   - It comprises various types of rocks, including sedimentary, volcanic, and metamorphic.

   - This region is characterized by vast plateaus, high plateaus, and deep valleys, and it represents a critical tectonic boundary between the Indian and Asian plates.


Geological features in the Himalayan region:


1. Main Frontal Thrust (HFT):

   - The Main Frontal Thrust, often abbreviated as HFT, is a geological fault in the Himalayan region.

   - It marks the boundary between the Indian tectonic plate and the Eurasian tectonic plate.

   - The Indian plate is pushing northward into the Eurasian plate, causing immense geological pressure and the uplifting of the Himalayan mountain range.

   - The HFT is a significant geological feature as it's responsible for the tectonic compression and the creation of the highest peaks in the world, including Mount Everest.


2. Main Boundary Thrust (MBT):

   - The Main Boundary Thrust, or MBT, is another prominent fault zone in the Himalayas.

   - It lies to the north of the Lesser Himalayas and marks the boundary between the Lesser Himalayas and the Great Himalayas.

   - This fault is characterized by the overthrusting of the Lesser Himalayas over the Great Himalayas due to tectonic pressure from the north.

   - It plays a crucial role in the geological structure and topography of the Himalayan region.


3. Main Central Thrust (MCT):

   - The Main Central Thrust, referred to as MCT, is a major fault line in the Himalayan region.

   - It is located to the south of the Great Himalayas and separates them from the Lesser Himalayas.

   - The MCT is known for the southward thrust of the Lesser Himalayan rocks over the Indian craton.

   - This thrust fault is integral to understanding the complex geological history and the formation of the Himalayan mountain range.


4. Indus-Yarlung Suture Zone (ITSZ):

   - The Indus-Yarlung Suture Zone, or ITSZ, is a geological boundary in the Himalayas.

   - It is the point where the Indian plate and the Asian plate have collided and are still converging.

   - This zone contains various geological features, including ophiolites (sections of oceanic crust and mantle rocks), which provide evidence of the ancient Tethys Ocean that existed before the collision of these plates.

   - The ITSZ is significant in the study of plate tectonics and the geological evolution of the Himalayan region.


These terminologies are crucial for understanding the geology and tectonics of the Himalayan mountain range, which is a dynamic and complex region shaped by the collision of major tectonic plates

Comments

Popular posts from this blog

Geology and Tectonic. Indian Shield

1. Ch (Chattisgarh Basin): Chattisgarh Basin is a geological region in central India known for its sedimentary rock formations. It's important for its mineral resources, including coal and iron ore. 2. CIS (Central Indian Shear Zone): CIS is a tectonic boundary in central India where the Indian Plate interacts with the Eurasian Plate. It's characterized by significant faulting and seismic activity. 3. GR (Godavari Rift): The Godavari Rift is a geological feature associated with the rifting and splitting of the Indian Plate. It's located in the Godavari River basin in southeastern India. 4. M (Madras Block): The Madras Block is a stable continental block in southern India. It's part of the Indian Plate and is not associated with active tectonic processes. 5. Mk (Malanjkhand): Malanjkhand is known for its copper deposits and is one of the largest copper mines in India. 6. MR (Mahanadi Rift): The Mahanadi Rift is a geological feature related to the rifting of the Indian Pl...

Solar Radiation and Remote Sensing

Satellite Remote Sensing Satellite remote sensing is the science of acquiring information about Earth's surface and atmosphere without physical contact , using sensors mounted on satellites. These sensors detect and record electromagnetic radiation (EMR) that is either emitted or reflected from the Earth's surface. Solar Radiation & Earth's Energy Balance Solar Radiation is the primary source of energy for Earth's climate system. It originates from the Sun and travels through space as electromagnetic waves . Incoming Shortwave Solar Radiation (insolation) consists mostly of ultraviolet, visible, and near-infrared wavelengths . When it reaches Earth, it can be: Absorbed by the atmosphere, clouds, or surface Reflected back to space Scattered by atmospheric particles Outgoing Longwave Radiation is the infrared energy emitted by Earth back into space after absorbing solar energy. This process helps maintain Earth's thermal bala...

Morpho-Tectonic Framework of India

The MorphoTectonic Framework of India refers to the combined study of the country's landforms (morphology) and its geological tectonic features. This framework provides insights into how geological forces have shaped India's topography over millions of years. Here's a breakdown of this concept: 1. Morphology: This aspect focuses on the physical features and landforms of India. It includes the study of mountains, plateaus, plains, valleys, rivers, and other surface features. For example, the Himalayas, Western Ghats, IndoGangetic Plains, and Deccan Plateau are prominent morphological features of India. 2. Tectonics: Tectonics deals with the movement and deformation of the Earth's lithosphere (the outermost rigid layer of the Earth). In the case of India, it primarily involves the interactions of the Indian Plate with neighboring tectonic plates. India is situated at the convergence of several major tectonic boundaries:     Collision with the Eurasian Plate: The most sign...

Neighbourhood Operations

 Neighbourhood Operations in GIS? In GIS and raster data , neighbourhood operations look at a group of nearby pixels (not just one) to understand or change a pixel's value. Think of it like checking what's around a house before deciding what color to paint it! Why "Neighbourhood"? Each pixel has " neighbours " (just like how your house has nearby houses). Neighbourhood operations check these nearby pixels and do some calculation to get a new value. 1. Aggregations (Summarizing Nearby Values) Aggregation means combining values of several pixels into one. We do this to: Find the average of surrounding pixels Find the minimum or maximum value Smooth the map (make it less rough) 🧒🏻 Example: Imagine checking the test scores of 9 students sitting around you and finding the average score . That's aggregation!  2. Filtering Techniques Filtering is used to improve or highlight features in a raster image, just like f...

India – Geographic Location – Spatial Significance

India's geographic location holds immense spatial significance due to its position on the world map. Here's an explanation of India's geographic location and its spatial significance: Geographic Location: India is a vast South Asian country located on the Indian subcontinent. Its geographic coordinates are approximately between 8°4'N and 37°6'N latitude and 68°7'E and 97°25'E longitude. It is surrounded by several important bodies of water: - To the west, it has a coastline along the Arabian Sea. - To the east, it is bordered by the Bay of Bengal. - To the south, it faces the Indian Ocean. - To the north, India shares its land borders with Pakistan, China, Nepal, Bhutan, Bangladesh, and Myanmar. Spatial Significance: 1. Strategic Location: India's location places it at the crossroads of South Asia and the Indian Ocean region. This strategic position has made it historically important for trade, diplomacy, and geopolitics. 2. Trade and Commerce: India...