Skip to main content

surface water. River. Lakes

The world distribution of surface water resources refers to the uneven distribution of freshwater on the Earth's surface, including lakes, rivers, and reservoirs. This distribution varies greatly from one region to another due to factors such as geography, climate, and human activities. Here's an explanation of the world distribution of surface water resources:


1. Lakes and Rivers:

   - North America and Eurasia: These continents have some of the largest freshwater lakes, including the Great Lakes in North America and the Caspian Sea in Eurasia. Major rivers like the Mississippi, Missouri, and Volga flow through these continents, providing significant surface water resources.

   - Africa: The African continent is home to several major rivers, such as the Nile, Congo, and Niger, as well as important lakes like Lake Victoria, Lake Tanganyika, and Lake Malawi.

   - South America: The Amazon River basin in South America houses the largest river system by discharge in the world. The continent also features extensive freshwater resources in the form of rivers and lakes.


2. Asia:

   - South Asia: The Indian subcontinent has the Ganges, Brahmaputra, and Indus rivers, along with large reservoirs like Tarbela Dam. The region heavily relies on these water sources for agriculture and drinking water.

   - East Asia: China's Yangtze River and its tributaries, such as the Yellow River, provide essential surface water resources to the most populous country in the world.

   - Southeast Asia: The Mekong River flows through several countries in Southeast Asia, serving as a vital waterway and water source.


3. Europe:

   - Western Europe: Major rivers like the Rhine and Danube flow through Western Europe, supporting industrial and agricultural activities.

   - Eastern Europe: The region has significant freshwater resources, including the Dnieper, Don, and Volga rivers.


4. Australia: While Australia is relatively arid, it has important river systems like the Murray-Darling Basin, which is crucial for agriculture and water supply.


5. Middle East:

   - Tigris-Euphrates Basin: The Tigris and Euphrates rivers are essential for Iraq, but they are heavily regulated and impacted by upstream dams in Turkey.

   - Nile Basin: The Nile River is a lifeline for Egypt and Sudan, but it's a source of contention among countries upstream that share its waters.


6. Arctic and Antarctic Regions: These regions have abundant surface water in the form of ice caps, glaciers, and ice sheets. However, this freshwater is not readily accessible for human use.


7. Human Impact: Human activities, such as dam construction, irrigation, and pollution, can significantly alter the distribution and quality of surface water resources. These impacts can lead to both water scarcity and water quality issues.


8. Climate Change: Climate change is affecting the distribution of surface water resources through altered precipitation patterns, glacier melt, and changes in river flow.


Understanding the world distribution of surface water resources is vital for managing and conserving these essential freshwater sources. It's crucial for addressing water scarcity, supporting ecosystems, and sustaining human populations in different regions around the globe.

Comments

Popular posts from this blog

geostationary and sun-synchronous

Orbital characteristics of Remote sensing satellite geostationary and sun-synchronous  Orbits in Remote Sensing Orbit = the path a satellite follows around the Earth. The orbit determines what part of Earth the satellite can see , how often it revisits , and what applications it is good for . Remote sensing satellites mainly use two standard orbits : Geostationary Orbit (GEO) Sun-Synchronous Orbit (SSO)  Geostationary Satellites (GEO) Characteristics Altitude : ~35,786 km above the equator. Period : 24 hours → same as Earth's rotation. Orbit type : Circular, directly above the equator . Appears "stationary" over one fixed point on Earth. Concepts & Terminologies Geosynchronous = orbit period matches Earth's rotation (24h). Geostationary = special type of geosynchronous orbit directly above equator → looks fixed. Continuous coverage : Can monitor the same area all the time. Applications Weather...

Platforms in Remote Sensing

In remote sensing, a platform is the physical structure or vehicle that carries a sensor (camera, scanner, radar, etc.) to observe and collect information about the Earth's surface. Platforms are classified mainly by their altitude and mobility : Ground-Based Platforms Definition : Sensors mounted on the Earth's surface or very close to it. Examples : Tripods, towers, ground vehicles, handheld instruments. Applications : Calibration and validation of satellite data Detailed local studies (e.g., soil properties, vegetation health, air quality) Strength : High spatial detail but limited coverage. Airborne Platforms Definition : Sensors carried by aircraft, balloons, or drones (UAVs). Altitude : A few hundred meters to ~20 km. Examples : Airplanes with multispectral scanners UAVs with high-resolution cameras or LiDAR High-altitude balloons (stratospheric platforms) Applications : Local-to-regional mapping ...

Resolution of Sensors in Remote Sensing

Spatial Resolution 🗺️ Definition : The smallest size of an object on the ground that a sensor can detect. Measured as : The size of a pixel on the ground (in meters). Example : Landsat → 30 m (each pixel = 30 × 30 m on Earth). WorldView-3 → 0.31 m (very detailed, you can see cars). Fact : Higher spatial resolution = finer details, but smaller coverage. Spectral Resolution 🌈 Definition : The ability of a sensor to capture information in different parts (bands) of the electromagnetic spectrum . Measured as : The number and width of spectral bands. Types : Panchromatic (1 broad band, e.g., black & white image). Multispectral (several broad bands, e.g., Landsat with 7–13 bands). Hyperspectral (hundreds of very narrow bands, e.g., AVIRIS). Fact : Higher spectral resolution = better identification of materials (e.g., minerals, vegetation types). Radiometric Resolution 📊 Definition : The ability of a sensor to ...

Man-Made Disasters

  A man-made disaster (also called a technological disaster or anthropogenic disaster ) is a catastrophic event caused directly or indirectly by human actions , rather than natural processes. These disasters arise due to negligence, error, industrial activity, conflict, or misuse of technology , and often result in loss of life, property damage, and environmental degradation . Terminology: Anthropogenic = originating from human activity. Technological hazard = hazard caused by failure or misuse of technology or industry. 🔹 Conceptual Understanding Man-made disasters are part of the Disaster Management Cycle , which includes: Prevention – avoiding unsafe practices. Mitigation – reducing disaster impact (e.g., safety regulations). Preparedness – training and planning. Response – emergency actions after the disaster. Recovery – long-term rebuilding and policy correction. These disasters are predictable and preventable through strong...

Types of Remote Sensing

Remote Sensing means collecting information about the Earth's surface without touching it , usually using satellites, aircraft, or drones . There are different types of remote sensing based on the energy source and the wavelength region used. 🛰️ 1. Active Remote Sensing 📘 Concept: In active remote sensing , the sensor sends out its own energy (like a signal or pulse) to the Earth's surface. The sensor then records the reflected or backscattered energy that comes back from the surface. ⚙️ Key Terminology: Transmitter: sends energy (like a radar pulse or laser beam). Receiver: detects the energy that bounces back. Backscatter: energy that is reflected back to the sensor. 📊 Examples of Active Sensors: RADAR (Radio Detection and Ranging): Uses microwave signals to detect surface roughness, soil moisture, or ocean waves. LiDAR (Light Detection and Ranging): Uses laser light (near-infrared) to measure elevation, vegetation...