Skip to main content

QuickBird. AVIRIS




QuickBird and AVIRIS


1. QuickBird:

   - QuickBird is a commercial high-resolution Earth observation satellite system launched by DigitalGlobe in 2001.

   - Spatial Resolution: It is known for its very high spatial resolution, with panchromatic (black and white) imagery at 61 centimeters and multispectral imagery at 2.44 meters.

   - Spectral Bands: QuickBird is equipped with multispectral sensors, which means it captures imagery in multiple spectral bands, including visible, near-infrared, and short-wave infrared.

   - Applications: QuickBird data is used for various applications, such as urban planning, land cover mapping, disaster management, and environmental monitoring. Its high spatial resolution makes it suitable for detailed feature extraction and analysis in urban and natural environments.

   - Availability: QuickBird data was widely used by commercial and government entities for both civil and defense purposes. However, it's important to note that satellite missions have lifespans, and data availability may have changed since my last knowledge update in September 2021.


2. AVIRIS (Airborne Visible/Infrared Imaging Spectrometer):

   - AVIRIS is an airborne remote sensing instrument designed to capture high-resolution spectral data.

   - Spectral Resolution: It offers high spectral resolution, covering a wide range of wavelengths from visible to short-wave infrared.

   - Applications: AVIRIS is often used for geological and environmental studies, mineral exploration, vegetation analysis, and atmospheric research. Its ability to capture detailed spectral signatures helps scientists and researchers identify and study various materials and components on the Earth's surface.

   - Flexibility: Unlike satellites, AVIRIS is mounted on aircraft, providing flexibility in data collection. Researchers can target specific areas of interest for detailed spectral analysis.

   - Scientific Research: AVIRIS has contributed significantly to scientific research in fields such as geology, agriculture, forestry, and climate science by providing rich spectral data for analysis.

   - Availability: AVIRIS data is typically acquired through airborne campaigns conducted by research institutions and agencies. Availability may vary depending on specific research projects and campaigns.


In summary, QuickBird is a high-resolution commercial satellite known for its detailed imagery and multispectral capabilities, while AVIRIS is an airborne imaging spectrometer designed for capturing high-resolution spectral data. Both instruments have played significant roles in remote sensing, contributing to various scientific, environmental, and commercial applications. Please note that the availability and specific details of these systems may have evolved since my last knowledge update in September 2021.

Comments

Popular posts from this blog

Water cycle. Hydrological cycle.

Water cycle. Hydrological cycle.  Usgs 

Heat balance. Water budget

The concepts of heat balance and water budget are crucial in understanding the Earth's climate and the distribution of water resources. Here's an explanation of each: 1. Heat Balance: The Earth's heat balance, also known as the Earth's energy budget, refers to the equilibrium between the incoming solar radiation (energy from the Sun) and the outgoing terrestrial radiation (heat radiated back into space). This balance determines the temperature and climate of our planet. Here's how it works: - Incoming Solar Radiation (Insolation): The Sun emits energy in the form of sunlight, including visible and ultraviolet (UV) radiation. This solar energy reaches the Earth's atmosphere and surface. - Absorption and Reflection: When sunlight reaches the Earth, some of it is absorbed by the surface (land, water, vegetation), warming the Earth. Some of it is also reflected back into space by clouds, ice, and other reflective surfaces. - Outgoing Terrestrial Radiation: As the Ea

What is Water and how it is a Resource

Water:   1.   Chemical Composition:   Water is a compound made up of two hydrogen atoms and one oxygen atom, with the chemical formula H2O. 2.   States of Matter:   It can exist in three main states - liquid, solid (ice), and gas (water vapor) - depending on temperature and pressure. 3.   Universal Solvent:   Water is an excellent solvent, meaning it can dissolve a wide range of substances, making it essential for various chemical reactions and biological processes. 4.   High Heat Capacity:   It has a high heat capacity, which helps regulate temperature and climate patterns on Earth. 5.   Cohesion and Adhesion:   Water molecules exhibit cohesion (stick together) and adhesion (stick to other surfaces), crucial for capillary action in plants and the transport of nutrients. 6.   Surface Tension:   The surface tension of water enables insects like water striders to "walk" on its surface due to the cohesive forces between molecules.   Water as a Resource:   1.   Life Sustenance:  

Geography of Water Resources. Scope.

1. Distribution and Availability : Study of how water is distributed across different geographic regions, including its presence in oceans, rivers, lakes, groundwater, and glaciers. 2. Hydrological Cycle : Examination of the movement of water through evaporation, condensation, precipitation, runoff, and groundwater recharge. 3. Water Quality : Analysis of the physical, chemical, and biological characteristics of water, addressing issues like pollution and contamination. 4. Water Scarcity : Exploration of areas where water supply is insufficient to meet demand, often due to factors like population growth, climate change, and mismanagement. 5. Water Management : Study of strategies to conserve, allocate, and regulate water resources, including infrastructure like dams, reservoirs, and irrigation systems. 6. Water-related Ecosystems : Understanding the influence of water on various ecosystems, such as wetlands, rivers, estuaries, and coastal areas. 7. Human Impact : E

Watershed. Catchment. Basin

A watershed, also known as a river basin or drainage basin, is a fundamental concept in geohydrology and hydrology. It refers to a specific geographic area or region of land where all the surface water, including rainfall, snowmelt, and runoff, drains into a common outlet, such as a river, lake, or ocean. Here's an explanation of each term: 1. Watershed: A watershed is essentially a natural hydrological unit defined by the topography of the land. It represents the entire area from which all precipitation and surface water flow eventually gathers at a single point. This point is typically where the main river or stream within the watershed exits into a larger body of water, such as an ocean. Watersheds come in various sizes, from small ones that encompass a few square miles to enormous ones that cover entire continents. 2. River/Drainage Basin: A river basin or drainage basin is another way to describe a watershed. It's the land area that collects and channels water into a river