Skip to main content

Microwave Remote Sensing

Active and passive microwave remote sensing are two distinct methods used in the field of remote sensing to collect information about the Earth's surface and atmosphere using microwave radiation. Let's explore the principles of each:


1. Active Microwave Remote Sensing:

   - Principle: Active microwave remote sensing involves the transmission of microwave pulses from a sensor or satellite to the Earth's surface. These pulses are then reflected or scattered back to the sensor, where they are received and analyzed to gather information about the target area.

   - Key Features:

     - Microwave Source: An active microwave sensor emits microwave radiation (usually in the form of radar pulses) towards the Earth.

     - Reflection and Scattering: When the microwave pulses encounter objects on the Earth's surface, they interact with them. Some of the energy is reflected back to the sensor, while the rest is scattered.

     - Distance Measurement: By measuring the time it takes for the microwave pulses to travel to the target and return (time-of-flight), active microwave remote sensing can calculate the distance to the target.

     - Applications: Active microwave remote sensing is used for applications such as topographic mapping, vegetation monitoring, and soil moisture estimation. Synthetic Aperture Radar (SAR) is a common example of an active microwave sensor.


2. Passive Microwave Remote Sensing:

   - Principle: Passive microwave remote sensing, on the other hand, relies on the detection of naturally occurring microwave radiation emitted or scattered by the Earth's surface and atmosphere. Instead of actively transmitting microwave signals, passive sensors measure the microwave radiation already present.

   - Key Features:

     - Microwave Receiver: Passive microwave sensors have specialized receivers that can detect microwave emissions from the Earth.

     - Spectral Bands: These sensors are sensitive to specific microwave frequencies or spectral bands, which correspond to different properties of the Earth's surface or atmosphere.

     - Applications: Passive microwave remote sensing is often used for monitoring atmospheric conditions (e.g., weather forecasting), sea surface temperature, sea ice concentration, and soil moisture. It is particularly valuable for studying the Earth's energy balance.


In summary, active microwave remote sensing involves sending out microwave pulses and measuring their reflections or scattering, while passive microwave remote sensing relies on naturally emitted or scattered microwave radiation. Each method has its unique applications and advantages, making them valuable tools for Earth observation and scientific research.





Comments

Popular posts from this blog

Photogrammetry – Types of Photographs

In photogrammetry, aerial photographs are categorized based on camera orientation , coverage , and spectral sensitivity . Below is a breakdown of the major types: 1️⃣ Based on Camera Axis Orientation Type Description Key Feature Vertical Photo Taken with the camera axis pointing directly downward (within 3° of vertical). Used for maps and measurements Oblique Photo Taken with the camera axis tilted away from vertical. Covers more area but with distortions Low Oblique: Horizon not visible High Oblique: Horizon visible 2️⃣ Based on Number of Photos Taken Type Description Single Photo One image taken of an area Stereoscopic Pair Two overlapping photos for 3D viewing and depth analysis Strip or Mosaic Series of overlapping photos covering a long area, useful in mapping large regions 3️⃣ Based on Spectral Sensitivity Type Description Application Panchromatic Captures images in black and white General mapping Infrared (IR) Sensitive to infrared radiation Veget...

Photogrammetry – Geometry of a Vertical Photograph

Photogrammetry is the science of making measurements from photographs, especially for mapping and surveying. When the camera axis is perpendicular (vertical) to the ground, the photo is called a vertical photograph , and its geometry is central to accurate mapping.  Elements of Vertical Photo Geometry In a vertical aerial photograph , the geometry is governed by the central projection principle. Here's how it works: 1. Principal Point (P) The point on the photo where the optical axis of the camera intersects the photo plane. It's the geometric center of the photo. 2. Nadir Point (N) The point on the ground directly below the camera at the time of exposure. Ideally, in a perfect vertical photo, the nadir and principal point coincide. 3. Photo Center (C) Usually coincides with the principal point in a vertical photo. 4. Ground Coordinates (X, Y, Z) Real-world (map) coordinates of objects photographed. 5. Flying Height (H) He...

Raster Data Structure

Raster Data Raster data is like a digital photo made up of small squares called cells or pixels . Each cell shows something about that spot — like how high it is (elevation), how hot it is (temperature), or what kind of land it is (forest, water, etc.). Think of it like a graph paper where each box is colored to show what's there. Key Points What's in the cell? Each cell stores information — for example, "water" or "forest." Where is the cell? The cell's location comes from its place in the grid (like row 3, column 5). We don't need to store its exact coordinates. How Do We Decide a Cell's Value? Sometimes, one cell covers more than one thing (like part forest and part water). To choose one value , we can: Center Point: Use whatever feature is in the middle. Most Area: Use the feature that takes up the most space in the cell. Most Important: Use the most important feature (like a road or well), even if it...

Photogrammetry

Photogrammetry is the science of taking measurements from photographs —especially to create maps, models, or 3D images of objects, land, or buildings. Imagine you take two pictures of a mountain from slightly different angles. Photogrammetry uses those photos to figure out the shape, size, and position of the mountain—just like our eyes do when we see in 3D! Concepts and Terminologies 1. Photograph A picture captured by a camera , either from the ground (terrestrial) or from above (aerial or drone). 2. Stereo Pair Two overlapping photos taken from different angles. When seen together, they help create a 3D effect —just like how two human eyes work. 3. Overlap To get a 3D model, photos must overlap each other: Forward overlap : Between two photos in a flight line (usually 60–70%) Side overlap : Between adjacent flight lines (usually 30–40%) 4. Scale The ratio of the photo size to real-world size. Example: A 1:10,000 scale photo means 1 cm on the photo...

Logical Data Model in GIS

In GIS, a logical data model defines how data is structured and interrelated—independent of how it is physically stored or implemented. It serves as a blueprint for designing databases, focusing on the organization of entities, their attributes, and relationships, without tying them to a specific database technology. Key Features Abstraction : The logical model operates at an abstract level, emphasizing the conceptual structure of data rather than the technical details of storage or implementation. Entity-Attribute Relationships : It identifies key entities (objects or concepts) and their attributes (properties), as well as the logical relationships between them. Business Rules : Business logic is embedded in the model to enforce rules, constraints, and conditions that ensure data consistency and accuracy. Technology Independence : The logical model is platform-agnostic—it is not tied to any specific database system or storage format. Visual Representat...