Skip to main content

Microwave Remote Sensing

Active and passive microwave remote sensing are two distinct methods used in the field of remote sensing to collect information about the Earth's surface and atmosphere using microwave radiation. Let's explore the principles of each:


1. Active Microwave Remote Sensing:

   - Principle: Active microwave remote sensing involves the transmission of microwave pulses from a sensor or satellite to the Earth's surface. These pulses are then reflected or scattered back to the sensor, where they are received and analyzed to gather information about the target area.

   - Key Features:

     - Microwave Source: An active microwave sensor emits microwave radiation (usually in the form of radar pulses) towards the Earth.

     - Reflection and Scattering: When the microwave pulses encounter objects on the Earth's surface, they interact with them. Some of the energy is reflected back to the sensor, while the rest is scattered.

     - Distance Measurement: By measuring the time it takes for the microwave pulses to travel to the target and return (time-of-flight), active microwave remote sensing can calculate the distance to the target.

     - Applications: Active microwave remote sensing is used for applications such as topographic mapping, vegetation monitoring, and soil moisture estimation. Synthetic Aperture Radar (SAR) is a common example of an active microwave sensor.


2. Passive Microwave Remote Sensing:

   - Principle: Passive microwave remote sensing, on the other hand, relies on the detection of naturally occurring microwave radiation emitted or scattered by the Earth's surface and atmosphere. Instead of actively transmitting microwave signals, passive sensors measure the microwave radiation already present.

   - Key Features:

     - Microwave Receiver: Passive microwave sensors have specialized receivers that can detect microwave emissions from the Earth.

     - Spectral Bands: These sensors are sensitive to specific microwave frequencies or spectral bands, which correspond to different properties of the Earth's surface or atmosphere.

     - Applications: Passive microwave remote sensing is often used for monitoring atmospheric conditions (e.g., weather forecasting), sea surface temperature, sea ice concentration, and soil moisture. It is particularly valuable for studying the Earth's energy balance.


In summary, active microwave remote sensing involves sending out microwave pulses and measuring their reflections or scattering, while passive microwave remote sensing relies on naturally emitted or scattered microwave radiation. Each method has its unique applications and advantages, making them valuable tools for Earth observation and scientific research.





Comments

Popular posts from this blog

Disaster Management

1. Disaster Risk Analysis → Disaster Risk Reduction → Disaster Management Cycle Disaster Risk Analysis is the first step in managing disasters. It involves assessing potential hazards, identifying vulnerable populations, and estimating possible impacts. Once risks are identified, Disaster Risk Reduction (DRR) strategies come into play. DRR aims to reduce risk and enhance resilience through planning, infrastructure development, and policy enforcement. The Disaster Management Cycle then ensures a structured approach by dividing actions into pre-disaster, during-disaster, and post-disaster phases . Example Connection: Imagine a coastal city prone to cyclones: Risk Analysis identifies low-lying areas and weak infrastructure. Risk Reduction includes building seawalls, enforcing strict building codes, and training residents for emergency situations. The Disaster Management Cycle ensures ongoing preparedness, immediate response during a cyclone, and long-term recovery afterw...

Logical Data Model in GIS

In GIS, a logical data model defines how data is structured and interrelated—independent of how it is physically stored or implemented. It serves as a blueprint for designing databases, focusing on the organization of entities, their attributes, and relationships, without tying them to a specific database technology. Key Features Abstraction : The logical model operates at an abstract level, emphasizing the conceptual structure of data rather than the technical details of storage or implementation. Entity-Attribute Relationships : It identifies key entities (objects or concepts) and their attributes (properties), as well as the logical relationships between them. Business Rules : Business logic is embedded in the model to enforce rules, constraints, and conditions that ensure data consistency and accuracy. Technology Independence : The logical model is platform-agnostic—it is not tied to any specific database system or storage format. Visual Representat...

Approaches of Surface Water Management: Watershed-Based Approaches

Surface water management refers to the strategies used to regulate and optimize the availability, distribution, and quality of surface water resources such as rivers, lakes, and reservoirs. One of the most effective strategies is the watershed-based approach , which considers the entire watershed or drainage basin as a unit for water resource management, ensuring sustainability and minimizing conflicts between upstream and downstream users. 1. Watershed-Based Approaches Watershed A watershed (or drainage basin) is a geographical area where all precipitation and surface runoff flow into a common outlet such as a river, lake, or ocean. Example : The Ganga River Basin is a watershed that drains into the Bay of Bengal. Hydrological Cycle and Watershed Management Watershed-based approaches work by managing the hydrological cycle , which involves precipitation, infiltration, runoff, evapotranspiration, and groundwater recharge. Precipitation : Rainfall or snowfall within a...

Raster Data Structure

Raster Data Raster data is like a digital photo made up of small squares called cells or pixels . Each cell shows something about that spot — like how high it is (elevation), how hot it is (temperature), or what kind of land it is (forest, water, etc.). Think of it like a graph paper where each box is colored to show what's there. Key Points What's in the cell? Each cell stores information — for example, "water" or "forest." Where is the cell? The cell's location comes from its place in the grid (like row 3, column 5). We don't need to store its exact coordinates. How Do We Decide a Cell's Value? Sometimes, one cell covers more than one thing (like part forest and part water). To choose one value , we can: Center Point: Use whatever feature is in the middle. Most Area: Use the feature that takes up the most space in the cell. Most Important: Use the most important feature (like a road or well), even if it...

Disaster Management international framework

The international landscape for disaster management relies on frameworks that emphasize reducing risk, improving preparedness, and fostering resilience to protect lives, economies, and ecosystems from the impacts of natural and human-made hazards. Here's a more detailed examination of key international frameworks, with a focus on terminologies, facts, and concepts, as well as the role of the United Nations Office for Disaster Risk Reduction (UNDRR): 1. Sendai Framework for Disaster Risk Reduction 2015-2030 Adopted at the Third UN World Conference on Disaster Risk Reduction in Sendai, Japan, and endorsed by the UN General Assembly in 2015, the Sendai Framework represents a paradigm shift from disaster response to proactive disaster risk management. It applies across natural, technological, and biological hazards. Core Priorities: Understanding Disaster Risk: This includes awareness of disaster risk factors and strengthening risk assessments based on geographic, social, and econo...