Skip to main content

LiDaR Principles and applications

LIDAR, which stands for Light Detection and Ranging, is a remote sensing technology that uses laser light to measure distances and create detailed three-dimensional representations of objects and environments. Here are the fundamental principles of LIDAR remote sensing:


1. Laser Emission: LIDAR systems emit laser pulses towards the target area. These laser pulses are typically in the form of short, intense bursts of light.


2. Propagation of Light: The emitted laser pulses travel through the atmosphere, where they may interact with particles or molecules, experiencing scattering and absorption. The laser light continues until it strikes an object or a surface.


3. Reflection or Scattering: When the laser pulse encounters an object or surface, a portion of the light is reflected back towards the LIDAR sensor. The time it takes for the laser pulse to travel to the target and return is measured.


4. Time-of-Flight Measurement: LIDAR calculates the distance to the target by precisely measuring the time it takes for the laser pulse to travel to the target and back. This is done using the speed of light as a constant.


5. Multiple Measurements: LIDAR systems typically emit thousands or even millions of laser pulses per second and record the return time and intensity of each pulse. This results in a dense cloud of points, often referred to as a "point cloud."


6. Data Processing: The collected data is processed to generate a detailed three-dimensional representation of the target area. This point cloud can be used to create digital elevation models, maps, or 3D models of objects and terrain.


7. Applications: LIDAR remote sensing is used in various applications, including topographic mapping, forestry management, urban planning, archaeology, autonomous vehicles, and more. Its ability to provide precise elevation and object information makes it invaluable for many industries.


LIDAR technology can be implemented in various ways, such as airborne LIDAR using aircraft or UAVs, terrestrial LIDAR for ground-based scanning, and even spaceborne LIDAR for planetary exploration. It has revolutionized the way we collect detailed geospatial information and has numerous practical applications in science, engineering, and environmental monitoring.



1. ICESat-2 (Ice, Cloud, and land Elevation Satellite-2): Launched in 2018 by NASA, ICESat-2 is designed for Earth science research, specifically to measure changes in ice sheet thickness and sea ice freeboard. It uses a LIDAR system called the Advanced Topographic Laser Altimeter System (ATLAS) to collect elevation data.


2. GEDI (Global Ecosystem Dynamics Investigation): Launched as part of the International Space Station (ISS) payload, GEDI is a LIDAR instrument that measures the three-dimensional structure of forests and ecosystems. It provides valuable data for understanding the Earth's carbon cycle.


3. LRO (Lunar Reconnaissance Orbiter): While primarily designed for lunar exploration, NASA's LRO carries a LIDAR instrument called the Lunar Orbiter Laser Altimeter (LOLA). LOLA measures the surface topography of the Moon with high precision.


4. TanDEM-X: This is a German radar satellite mission operated in conjunction with TerraSAR-X. Although it primarily uses radar technology, it also features a bistatic mode that, when combined with TerraSAR-X, can produce a global digital elevation model (DEM) with unprecedented accuracy.


5. ISAT (Indian Satellite for Antarctic Observation): ISAT-1, an Indian remote sensing satellite, was equipped with a LIDAR altimeter. It was used for monitoring ice sheet dynamics and elevation changes in the polar regions.


6. ATLAS (Advanced Topographic Laser Altimeter System): ATLAS is a LIDAR instrument onboard the Earth, Science, and Climate Pathfinder satellite, which is part of NASA's Earth System Science Pathfinder Program. It's used to monitor ice sheet elevation changes.





Comments

Popular posts from this blog

Geology and Tectonic. Indian Shield

1. Ch (Chattisgarh Basin): Chattisgarh Basin is a geological region in central India known for its sedimentary rock formations. It's important for its mineral resources, including coal and iron ore. 2. CIS (Central Indian Shear Zone): CIS is a tectonic boundary in central India where the Indian Plate interacts with the Eurasian Plate. It's characterized by significant faulting and seismic activity. 3. GR (Godavari Rift): The Godavari Rift is a geological feature associated with the rifting and splitting of the Indian Plate. It's located in the Godavari River basin in southeastern India. 4. M (Madras Block): The Madras Block is a stable continental block in southern India. It's part of the Indian Plate and is not associated with active tectonic processes. 5. Mk (Malanjkhand): Malanjkhand is known for its copper deposits and is one of the largest copper mines in India. 6. MR (Mahanadi Rift): The Mahanadi Rift is a geological feature related to the rifting of the Indian Pl...

Solar Radiation and Remote Sensing

Satellite Remote Sensing Satellite remote sensing is the science of acquiring information about Earth's surface and atmosphere without physical contact , using sensors mounted on satellites. These sensors detect and record electromagnetic radiation (EMR) that is either emitted or reflected from the Earth's surface. Solar Radiation & Earth's Energy Balance Solar Radiation is the primary source of energy for Earth's climate system. It originates from the Sun and travels through space as electromagnetic waves . Incoming Shortwave Solar Radiation (insolation) consists mostly of ultraviolet, visible, and near-infrared wavelengths . When it reaches Earth, it can be: Absorbed by the atmosphere, clouds, or surface Reflected back to space Scattered by atmospheric particles Outgoing Longwave Radiation is the infrared energy emitted by Earth back into space after absorbing solar energy. This process helps maintain Earth's thermal bala...

Morpho-Tectonic Framework of India

The MorphoTectonic Framework of India refers to the combined study of the country's landforms (morphology) and its geological tectonic features. This framework provides insights into how geological forces have shaped India's topography over millions of years. Here's a breakdown of this concept: 1. Morphology: This aspect focuses on the physical features and landforms of India. It includes the study of mountains, plateaus, plains, valleys, rivers, and other surface features. For example, the Himalayas, Western Ghats, IndoGangetic Plains, and Deccan Plateau are prominent morphological features of India. 2. Tectonics: Tectonics deals with the movement and deformation of the Earth's lithosphere (the outermost rigid layer of the Earth). In the case of India, it primarily involves the interactions of the Indian Plate with neighboring tectonic plates. India is situated at the convergence of several major tectonic boundaries:     Collision with the Eurasian Plate: The most sign...

Neighbourhood Operations

 Neighbourhood Operations in GIS? In GIS and raster data , neighbourhood operations look at a group of nearby pixels (not just one) to understand or change a pixel's value. Think of it like checking what's around a house before deciding what color to paint it! Why "Neighbourhood"? Each pixel has " neighbours " (just like how your house has nearby houses). Neighbourhood operations check these nearby pixels and do some calculation to get a new value. 1. Aggregations (Summarizing Nearby Values) Aggregation means combining values of several pixels into one. We do this to: Find the average of surrounding pixels Find the minimum or maximum value Smooth the map (make it less rough) 🧒🏻 Example: Imagine checking the test scores of 9 students sitting around you and finding the average score . That's aggregation!  2. Filtering Techniques Filtering is used to improve or highlight features in a raster image, just like f...

India – Geographic Location – Spatial Significance

India's geographic location holds immense spatial significance due to its position on the world map. Here's an explanation of India's geographic location and its spatial significance: Geographic Location: India is a vast South Asian country located on the Indian subcontinent. Its geographic coordinates are approximately between 8°4'N and 37°6'N latitude and 68°7'E and 97°25'E longitude. It is surrounded by several important bodies of water: - To the west, it has a coastline along the Arabian Sea. - To the east, it is bordered by the Bay of Bengal. - To the south, it faces the Indian Ocean. - To the north, India shares its land borders with Pakistan, China, Nepal, Bhutan, Bangladesh, and Myanmar. Spatial Significance: 1. Strategic Location: India's location places it at the crossroads of South Asia and the Indian Ocean region. This strategic position has made it historically important for trade, diplomacy, and geopolitics. 2. Trade and Commerce: India...