Skip to main content

LiDaR Principles and applications

LIDAR, which stands for Light Detection and Ranging, is a remote sensing technology that uses laser light to measure distances and create detailed three-dimensional representations of objects and environments. Here are the fundamental principles of LIDAR remote sensing:


1. Laser Emission: LIDAR systems emit laser pulses towards the target area. These laser pulses are typically in the form of short, intense bursts of light.


2. Propagation of Light: The emitted laser pulses travel through the atmosphere, where they may interact with particles or molecules, experiencing scattering and absorption. The laser light continues until it strikes an object or a surface.


3. Reflection or Scattering: When the laser pulse encounters an object or surface, a portion of the light is reflected back towards the LIDAR sensor. The time it takes for the laser pulse to travel to the target and return is measured.


4. Time-of-Flight Measurement: LIDAR calculates the distance to the target by precisely measuring the time it takes for the laser pulse to travel to the target and back. This is done using the speed of light as a constant.


5. Multiple Measurements: LIDAR systems typically emit thousands or even millions of laser pulses per second and record the return time and intensity of each pulse. This results in a dense cloud of points, often referred to as a "point cloud."


6. Data Processing: The collected data is processed to generate a detailed three-dimensional representation of the target area. This point cloud can be used to create digital elevation models, maps, or 3D models of objects and terrain.


7. Applications: LIDAR remote sensing is used in various applications, including topographic mapping, forestry management, urban planning, archaeology, autonomous vehicles, and more. Its ability to provide precise elevation and object information makes it invaluable for many industries.


LIDAR technology can be implemented in various ways, such as airborne LIDAR using aircraft or UAVs, terrestrial LIDAR for ground-based scanning, and even spaceborne LIDAR for planetary exploration. It has revolutionized the way we collect detailed geospatial information and has numerous practical applications in science, engineering, and environmental monitoring.



1. ICESat-2 (Ice, Cloud, and land Elevation Satellite-2): Launched in 2018 by NASA, ICESat-2 is designed for Earth science research, specifically to measure changes in ice sheet thickness and sea ice freeboard. It uses a LIDAR system called the Advanced Topographic Laser Altimeter System (ATLAS) to collect elevation data.


2. GEDI (Global Ecosystem Dynamics Investigation): Launched as part of the International Space Station (ISS) payload, GEDI is a LIDAR instrument that measures the three-dimensional structure of forests and ecosystems. It provides valuable data for understanding the Earth's carbon cycle.


3. LRO (Lunar Reconnaissance Orbiter): While primarily designed for lunar exploration, NASA's LRO carries a LIDAR instrument called the Lunar Orbiter Laser Altimeter (LOLA). LOLA measures the surface topography of the Moon with high precision.


4. TanDEM-X: This is a German radar satellite mission operated in conjunction with TerraSAR-X. Although it primarily uses radar technology, it also features a bistatic mode that, when combined with TerraSAR-X, can produce a global digital elevation model (DEM) with unprecedented accuracy.


5. ISAT (Indian Satellite for Antarctic Observation): ISAT-1, an Indian remote sensing satellite, was equipped with a LIDAR altimeter. It was used for monitoring ice sheet dynamics and elevation changes in the polar regions.


6. ATLAS (Advanced Topographic Laser Altimeter System): ATLAS is a LIDAR instrument onboard the Earth, Science, and Climate Pathfinder satellite, which is part of NASA's Earth System Science Pathfinder Program. It's used to monitor ice sheet elevation changes.





Comments

Popular posts from this blog

History of GIS

1. 1832 - Early Spatial Analysis in Epidemiology:    - Charles Picquet creates a map in Paris detailing cholera deaths per 1,000 inhabitants.    - Utilizes halftone color gradients for visual representation. 2. 1854 - John Snow's Cholera Outbreak Analysis:    - Epidemiologist John Snow identifies cholera outbreak source in London using spatial analysis.    - Maps casualties' residences and nearby water sources to pinpoint the outbreak's origin. 3. Early 20th Century - Photozincography and Layered Mapping:    - Photozincography development allows maps to be split into layers for vegetation, water, etc.    - Introduction of layers, later a key feature in GIS, for separate printing plates. 4. Mid-20th Century - Computer Facilitation of Cartography:    - Waldo Tobler's 1959 publication details using computers for cartography.    - Computer hardware development, driven by nuclear weapon research, leads to broader mapping applications by early 1960s. 5. 1960 - Canada Geograph...

Supervised Classification

Image Classification in Remote Sensing Image classification in remote sensing involves categorizing pixels in an image into thematic classes to produce a map. This process is essential for land use and land cover mapping, environmental studies, and resource management. The two primary methods for classification are Supervised and Unsupervised Classification . Here's a breakdown of these methods and the key stages of image classification. 1. Types of Classification Supervised Classification In supervised classification, the analyst manually defines classes of interest (known as information classes ), such as "water," "urban," or "vegetation," and identifies training areas —sections of the image that are representative of these classes. Using these training areas, the algorithm learns the spectral characteristics of each class and applies them to classify the entire image. When to Use Supervised Classification:   - You have prior knowledge about the c...

Accuracy Assessment

Accuracy assessment is the process of checking how correct your classified satellite image is . 👉 After supervised classification, the satellite image is divided into classes like: Water Forest Agriculture Built-up land Barren land But classification is done using computer algorithms, so some areas may be wrongly classified . 👉 Accuracy assessment helps to answer this question: ✔ "How much of my classified map is correct compared to real ground conditions?"  Goal The main goal is to: Measure reliability of classified maps Identify classification errors Improve classification results Provide scientific validity to research 👉 Without accuracy assessment, a classified map is not considered scientifically reliable . Reference Data (Ground Truth Data) Reference data is real-world information used to check classification accuracy. It can be collected from: ✔ Field survey using GPS ✔ High-resolution satellite images (Google Earth etc.) ✔ Existing maps or survey reports 🧭 Exampl...

Representation of Spatial and Temporal Relationships

In GIS, spatial and temporal relationships allow the integration of location (the "where") and time (the "when") to analyze phenomena across space and time. This combination is fundamental to studying dynamic processes such as urban growth, land-use changes, or natural disasters. Key Concepts and Terminologies Geographic Coordinates : Define the position of features on Earth using latitude, longitude, or other coordinate systems. Example: A building's location can be represented as (11.6994° N, 76.0773° E). Timestamp : Represents the temporal aspect of data, such as the date or time a phenomenon was observed. Example: A landslide occurrence recorded on 30/07/2024 . Spatial and Temporal Relationships : Describes how features relate in space and time. These relationships can be: Spatial : Topological (e.g., "intersects"), directional (e.g., "north of"), or proximity-based (e.g., "near"). Temporal : Sequential (e....

Development and scope of Environmental Geography and Recent concepts in environmental Geography

Environmental Geography studies the relationship between humans and nature in a spatial (place-based) way. It combines Physical Geography (natural processes) and Human Geography (human activities). A. Early Stage 🔹 Environmental Determinism Concept: Nature controls human life. Meaning: Climate, landforms, and soil decide how people live. Example: People in deserts (like Sahara Desert) live differently from people in fertile river valleys. 🔹 Possibilism Concept: Humans can modify nature. Meaning: Environment gives options, but humans make choices. Example: In dry areas like Rajasthan, people use irrigation to grow crops. 👉 In this stage, geography was mostly descriptive (explaining what exists). B. Evolution Stage (Mid-20th Century) Environmental problems increased due to: Industrialization Urbanization Deforestation Pollution Geographers started studying: Environmental degradation Resource management Human impact on ecosystems The field became analytical and problem-solving...