Skip to main content

IRS ResourceSat LISS

IRS, Resourcesat, and LISS are terms related to India's Earth observation satellite program. 


The Linear Imaging SelfScanning Sensor (LISS) is a type of remote sensing sensor technology used on various Earth observation satellites, particularly in India's Indian Remote Sensing (IRS) satellite program. Here's an explanation of LISS:


1. Imaging Technology: LISS is designed to capture highresolution imagery of the Earth's surface. It operates by scanning the terrain below and capturing data in the form of digital images.


2. SelfScanning: The term "SelfScanning" in LISS refers to its ability to scan the Earth's surface automatically without the need for any external mechanical scanning mechanisms. This makes LISS sensors more reliable and less prone to mechanical failures.


3. Linear Array: LISS sensors typically use a linear array of detectors, also known as a pushbroom scanner. This array consists of multiple lightsensitive detectors aligned in a row, allowing for the simultaneous capture of multiple pixels of information in a single pass over the Earth's surface.


4. Spectral Bands: LISS sensors are often equipped with multiple spectral bands, including visible and nearinfrared wavelengths. These different bands allow for the capture of images in various parts of the electromagnetic spectrum, enabling the extraction of valuable information about land cover, vegetation health, and more.


5. HighResolution Imaging: LISS sensors are known for their ability to provide highresolution images, which means they can capture fine details on the Earth's surface. This high level of detail makes them valuable for applications such as landuse mapping, urban planning, agricultural monitoring, and disaster management.


6. Applications: LISS imagery has been widely used in a range of applications, including agriculture, forestry, environmental monitoring, disaster response, and urban development planning. The data captured by LISS sensors helps governments, researchers, and industries make informed decisions and monitor changes in the Earth's landscape.


1. IRS (Indian Remote Sensing Satellite):

    The Indian Remote Sensing Satellite (IRS) program is a series of Earth observation satellites developed and operated by the Indian Space Research Organisation (ISRO).

    These satellites are designed to collect various types of Earthrelated data, including imagery and geospatial information.

    IRS satellites have been used for a wide range of applications, including agriculture, forestry, urban planning, disaster management, and environmental monitoring.

    The IRS program has seen multiple generations of satellites with progressively improved capabilities.


2. Resourcesat:

    Resourcesat is a series of Earth observation satellites within the IRS program, specifically focused on natural resource management and environmental monitoring.

    The Resourcesat series includes Resourcesat1, launched in 2003, and Resourcesat2, launched in 2011.

    These satellites are equipped with advanced remote sensing sensors for highresolution imaging and data collection.


In summary, IRS represents India's Earth observation satellite program, which includes a variety of satellites used for monitoring and collecting data related to the Earth's surface and environment. Resourcesat is a specific series within this program focused on natural resource management, and LISS is one of the sensor technologies used on these satellites to capture imagery and data. These initiatives play a crucial role in supporting various sectors in India, such as agriculture, forestry, and disaster management, among others.






Comments

Popular posts from this blog

Disaster Management

1. Disaster Risk Analysis → Disaster Risk Reduction → Disaster Management Cycle Disaster Risk Analysis is the first step in managing disasters. It involves assessing potential hazards, identifying vulnerable populations, and estimating possible impacts. Once risks are identified, Disaster Risk Reduction (DRR) strategies come into play. DRR aims to reduce risk and enhance resilience through planning, infrastructure development, and policy enforcement. The Disaster Management Cycle then ensures a structured approach by dividing actions into pre-disaster, during-disaster, and post-disaster phases . Example Connection: Imagine a coastal city prone to cyclones: Risk Analysis identifies low-lying areas and weak infrastructure. Risk Reduction includes building seawalls, enforcing strict building codes, and training residents for emergency situations. The Disaster Management Cycle ensures ongoing preparedness, immediate response during a cyclone, and long-term recovery afterw...

Logical Data Model in GIS

In GIS, a logical data model defines how data is structured and interrelated—independent of how it is physically stored or implemented. It serves as a blueprint for designing databases, focusing on the organization of entities, their attributes, and relationships, without tying them to a specific database technology. Key Features Abstraction : The logical model operates at an abstract level, emphasizing the conceptual structure of data rather than the technical details of storage or implementation. Entity-Attribute Relationships : It identifies key entities (objects or concepts) and their attributes (properties), as well as the logical relationships between them. Business Rules : Business logic is embedded in the model to enforce rules, constraints, and conditions that ensure data consistency and accuracy. Technology Independence : The logical model is platform-agnostic—it is not tied to any specific database system or storage format. Visual Representat...

Approaches of Surface Water Management: Watershed-Based Approaches

Surface water management refers to the strategies used to regulate and optimize the availability, distribution, and quality of surface water resources such as rivers, lakes, and reservoirs. One of the most effective strategies is the watershed-based approach , which considers the entire watershed or drainage basin as a unit for water resource management, ensuring sustainability and minimizing conflicts between upstream and downstream users. 1. Watershed-Based Approaches Watershed A watershed (or drainage basin) is a geographical area where all precipitation and surface runoff flow into a common outlet such as a river, lake, or ocean. Example : The Ganga River Basin is a watershed that drains into the Bay of Bengal. Hydrological Cycle and Watershed Management Watershed-based approaches work by managing the hydrological cycle , which involves precipitation, infiltration, runoff, evapotranspiration, and groundwater recharge. Precipitation : Rainfall or snowfall within a...

Raster Data Structure

Raster Data Raster data is like a digital photo made up of small squares called cells or pixels . Each cell shows something about that spot — like how high it is (elevation), how hot it is (temperature), or what kind of land it is (forest, water, etc.). Think of it like a graph paper where each box is colored to show what's there. Key Points What's in the cell? Each cell stores information — for example, "water" or "forest." Where is the cell? The cell's location comes from its place in the grid (like row 3, column 5). We don't need to store its exact coordinates. How Do We Decide a Cell's Value? Sometimes, one cell covers more than one thing (like part forest and part water). To choose one value , we can: Center Point: Use whatever feature is in the middle. Most Area: Use the feature that takes up the most space in the cell. Most Important: Use the most important feature (like a road or well), even if it...

Disaster Management international framework

The international landscape for disaster management relies on frameworks that emphasize reducing risk, improving preparedness, and fostering resilience to protect lives, economies, and ecosystems from the impacts of natural and human-made hazards. Here's a more detailed examination of key international frameworks, with a focus on terminologies, facts, and concepts, as well as the role of the United Nations Office for Disaster Risk Reduction (UNDRR): 1. Sendai Framework for Disaster Risk Reduction 2015-2030 Adopted at the Third UN World Conference on Disaster Risk Reduction in Sendai, Japan, and endorsed by the UN General Assembly in 2015, the Sendai Framework represents a paradigm shift from disaster response to proactive disaster risk management. It applies across natural, technological, and biological hazards. Core Priorities: Understanding Disaster Risk: This includes awareness of disaster risk factors and strengthening risk assessments based on geographic, social, and econo...