Skip to main content

IRS ResourceSat LISS

IRS, Resourcesat, and LISS are terms related to India's Earth observation satellite program. 


The Linear Imaging SelfScanning Sensor (LISS) is a type of remote sensing sensor technology used on various Earth observation satellites, particularly in India's Indian Remote Sensing (IRS) satellite program. Here's an explanation of LISS:


1. Imaging Technology: LISS is designed to capture highresolution imagery of the Earth's surface. It operates by scanning the terrain below and capturing data in the form of digital images.


2. SelfScanning: The term "SelfScanning" in LISS refers to its ability to scan the Earth's surface automatically without the need for any external mechanical scanning mechanisms. This makes LISS sensors more reliable and less prone to mechanical failures.


3. Linear Array: LISS sensors typically use a linear array of detectors, also known as a pushbroom scanner. This array consists of multiple lightsensitive detectors aligned in a row, allowing for the simultaneous capture of multiple pixels of information in a single pass over the Earth's surface.


4. Spectral Bands: LISS sensors are often equipped with multiple spectral bands, including visible and nearinfrared wavelengths. These different bands allow for the capture of images in various parts of the electromagnetic spectrum, enabling the extraction of valuable information about land cover, vegetation health, and more.


5. HighResolution Imaging: LISS sensors are known for their ability to provide highresolution images, which means they can capture fine details on the Earth's surface. This high level of detail makes them valuable for applications such as landuse mapping, urban planning, agricultural monitoring, and disaster management.


6. Applications: LISS imagery has been widely used in a range of applications, including agriculture, forestry, environmental monitoring, disaster response, and urban development planning. The data captured by LISS sensors helps governments, researchers, and industries make informed decisions and monitor changes in the Earth's landscape.


1. IRS (Indian Remote Sensing Satellite):

    The Indian Remote Sensing Satellite (IRS) program is a series of Earth observation satellites developed and operated by the Indian Space Research Organisation (ISRO).

    These satellites are designed to collect various types of Earthrelated data, including imagery and geospatial information.

    IRS satellites have been used for a wide range of applications, including agriculture, forestry, urban planning, disaster management, and environmental monitoring.

    The IRS program has seen multiple generations of satellites with progressively improved capabilities.


2. Resourcesat:

    Resourcesat is a series of Earth observation satellites within the IRS program, specifically focused on natural resource management and environmental monitoring.

    The Resourcesat series includes Resourcesat1, launched in 2003, and Resourcesat2, launched in 2011.

    These satellites are equipped with advanced remote sensing sensors for highresolution imaging and data collection.


In summary, IRS represents India's Earth observation satellite program, which includes a variety of satellites used for monitoring and collecting data related to the Earth's surface and environment. Resourcesat is a specific series within this program focused on natural resource management, and LISS is one of the sensor technologies used on these satellites to capture imagery and data. These initiatives play a crucial role in supporting various sectors in India, such as agriculture, forestry, and disaster management, among others.






Comments

Popular posts from this blog

RADIOMETRIC CORRECTION

  Radiometric correction is the process of removing sensor and environmental errors from satellite images so that the measured brightness values (Digital Numbers or DNs) truly represent the Earth's surface reflectance or radiance. In other words, it corrects for sensor defects, illumination differences, and atmospheric effects. 1. Detector Response Calibration Satellite sensors use multiple detectors to scan the Earth's surface. Sometimes, each detector responds slightly differently, causing distortions in the image. Calibration adjusts all detectors to respond uniformly. This includes: (a) De-Striping Problem: Sometimes images show light and dark vertical or horizontal stripes (banding). Caused by one or more detectors drifting away from their normal calibration — they record higher or lower values than others. Common in early Landsat MSS data. Effect: Every few lines (e.g., every 6th line) appear consistently brighter or darker. Soluti...

Geometric Correction

When satellite or aerial images are captured, they often contain distortions (errors in shape, scale, or position) caused by many factors — like Earth's curvature, satellite motion, terrain height (relief), or the Earth's rotation . These distortions make the image not properly aligned with real-world coordinates (latitude and longitude). 👉 Geometric correction is the process of removing these distortions so that every pixel in the image correctly represents its location on the Earth's surface. After geometric correction, the image becomes geographically referenced and can be used with maps and GIS data. Types  1. Systematic Correction Systematic errors are predictable and can be modeled mathematically. They occur due to the geometry and movement of the satellite sensor or the Earth. Common systematic distortions: Scan skew – due to the motion of the sensor as it scans the Earth. Mirror velocity variation – scanning mirror moves at a va...

Atmospheric Correction

It is the process of removing the influence of the atmosphere from remotely sensed images so that the data accurately represent the true reflectance of Earth's surface . When a satellite sensor captures an image, the radiation reaching the sensor is affected by gases, water vapor, aerosols, and dust in the atmosphere. These factors scatter and absorb light, changing the brightness and color of the features seen in the image. Although these atmospheric effects are part of the recorded signal, they can distort surface reflectance values , especially when images are compared across different dates or sensors . Therefore, corrections are necessary to make data consistent and physically meaningful. 🔹 Why Do We Need Atmospheric Correction? To retrieve true surface reflectance – It separates the surface signal from atmospheric influence. To ensure comparability – Enables comparing images from different times, seasons, or sensors. To improve visual quality – Remo...

Supervised Classification

In the context of Remote Sensing (RS) and Digital Image Processing (DIP) , supervised classification is the process where an analyst defines "training sites" (Areas of Interest or ROIs) representing known land cover classes (e.g., Water, Forest, Urban). The computer then uses these training samples to teach an algorithm how to classify the rest of the image pixels. The algorithms used to classify these pixels are generally divided into two broad categories: Parametric and Nonparametric decision rules. Parametric Decision Rules These algorithms assume that the pixel values in the training data follow a specific statistical distribution—almost always the Gaussian (Normal) distribution (the "Bell Curve"). Key Concept: They model the data using statistical parameters: the Mean vector ( $\mu$ ) and the Covariance matrix ( $\Sigma$ ) . Analogy: Imagine trying to fit a smooth hill over your data points. If a new point lands high up on the hill, it belongs to that cl...

Supervised Classification

Image Classification in Remote Sensing Image classification in remote sensing involves categorizing pixels in an image into thematic classes to produce a map. This process is essential for land use and land cover mapping, environmental studies, and resource management. The two primary methods for classification are Supervised and Unsupervised Classification . Here's a breakdown of these methods and the key stages of image classification. 1. Types of Classification Supervised Classification In supervised classification, the analyst manually defines classes of interest (known as information classes ), such as "water," "urban," or "vegetation," and identifies training areas —sections of the image that are representative of these classes. Using these training areas, the algorithm learns the spectral characteristics of each class and applies them to classify the entire image. When to Use Supervised Classification:   - You have prior knowledge about the c...